

GLI海色プロダクトの検証

O村上 浩¹ · 笹岡晃征¹ · 細田皇太郎¹ · 福島 甫² · 虎谷充 浩² · R. Frouin³ · B. G. Mitchell³ · 岸野元彰⁶ ·

石坂丞二⁴·田中昭彦⁵·佐々木宏明⁵·横内克巳⁷·清本容 子⁸·齊藤誠一⁹·D. Clark¹⁰·浅沼市男¹¹·P-Y. Deschamps¹²

¹JAXA EORC·²東海大·³SIO·⁴長崎大·⁵長崎産業振興 事業団·⁶東京海洋大·⁷水産庁·⁸西海区水研·⁹北大· ¹⁰NOAA·¹¹東京情報大·¹²Univ. Lille

日本海洋学会,2005年3月30日

1. Global imager (GLI)

- global cimager
- ADEOS-2に搭載された可視~熱赤外に36CHを持つ走査放射計
- ・走査幅1600km、空間分解能1km(30CH)と250m(6CH)
- ・2003年4月2日~2003年10月24日に全球観測
- EORC HP http://suzaku.eorc.jaxa.jp/GLI/index.html
 サンプルデータ(日本周辺などの画像・データ)をWebに掲載

2. History

- ADEOS-1/OCTS以来、アルゴリズム開発・改良と、 検証・解析を継続してきた。
- ADEOS-2打ち上げ後、GLIプロダクト検証・解析・ 改善作業を行い、2003年12月にVer.1プロダクトを、 2004年11月にVer.2をリリースした。
- その後も、沿岸域アルゴリズムや吸収性エアロゾル 補正やGLI 250mプロダクトの検討などを進めると共に、MODISデータへの適用(日本周辺準リアル処理 http://kuroshio.eorc.jaxa.jp/ADEOS/mod_nrt/)による処理実証・ 検証・データ提供(Web)を行なっている。

OCTS クロロフィルa濃度(1997/05/02)

 本発表ではGLI Ver.2プロダクト 精度評価について紹介する。

3. GLI Ocean Products

カテゴリ	パラメータ
	・正規化海面射出輝度 (13チャネル)
	•エアロゾル散乱輝度
	•865nmでのエアロゾル光学的厚さ
a)海洋大気補正 プロダクト	 エアロゾルオングストローム指数(エアロゾル特 性の指標となる)
	•エアロゾルアルベード(煤煙起源などの吸収性エ アロゾルの指標となる)
	• 光合成有効放射量(PAR)
	• 海洋表層クロロフィルa濃度 (CHLA)
b)海洋生物関連	• 有色溶存有機物吸光係数 (CDOM)
プロダクト	• 懸濁物質濃度 (SS)
	・490nm光の水中減衰係数 (K490)
c)海面水温 プロダクト	• 海面水温 (SST)

5.1 Match-up Results (Version 2 nLw)

- 初期バージョン(Ver.1)のnLw 380nmにおける分散は、センサ感度の走査角
 ・時間依存性を代替校正係数で考慮したことにより改善した。
- ・吸収性エアロゾル補正やSunglint補正によってNegative-nLwによる欠損や
 異常値が改善した。

5.2 Match-up Results (Ver.2 In-water Parameters)

Ver.2 offshore

・大気補正の改善によって有効データが増加した。

 ・沿岸域の精度が不十分(サブピクセル、特異な光学 特性..) 5 km **a**=land/total area **b coastal:** a>0.05 or b>0.1

5.3 CalCOFI results (provided by B.G. Mitchell)

nLwは短波長で現場
 データと合わないこと
 がある。

CHLAの散布図 この図では±11日の時間 のずれを許容 (前頁では±12時間)

A2GL1030408-gmC200-OCSFR020000002208000.01, chla

5.4 Tokyo-bay results (provided by M. Kishino)

• 相模湾や東京 湾湾口では良く あっている。

湾奥では nLw
 が短波長で高
 すぎ(CHLAが
 低すぎ)となる。

・ 吸収性アロゾル 補正offで、 湾外 で悪化、 湾口で 改善

→大気と水中の 短波長の吸収 の扱いが難しい

・250mの推定(824nmと2210nmで大気補正)でもCHLAを低見積もり

5.4 Tokyo-bay results (provided by M. Kishino)

相模湾や東京
 湾湾口では良く
 あっている。

 湾奥では nLw が短波長で高 すぎ(CHLAが 低すぎ)となる。

・ 吸収性アロゾル 補正offで、 湾外 で悪化、 湾口で 改善

→大気と水中の 短波長の吸収 の扱いが難しい

• 250mの推定(824nmと2210nmで大気補正)でもCHLAを低見積もり

6 Ver.2 Validation Summary

Parameter	<i>target</i>	Ver. 1	Ver. 2	Noie	
正規化海面射出輝度 (NWLR)	–35~+50% /–50~+100% offshore/coast	CH01-09 40 /70%, CH10-12 160 /110% (offshore/coast)	CH01-09: 40 /80% CH10-12 (120 /90%) (offshore/coast)	●新代替校正係数で380nmが顕著に改善 by ~15% ●有効データ数が 10% /60%増加 ●シグナルの小さい600nm以長では大きな誤差 ●吸収性エアロゾル補正を導入. 吸収率設定は要調整	
光合成有効放射量 (PAR)	–10~+10% (10km monthly)	11%	~12%	●Ver.2で雲量の日変化を統計的に考慮 ●TOAブイやSeaWiFSとの比較で検証	
クロロフィルa濃度 (CHLA)	–35~+50% /–50~+100% offshore/coast	60 /350% (offshore/coast)	70/240%) (offshore/coast)	●有効データ数が10 /60%増加 (offshore/coast) ●沿岸域でまだ精度が不十分である。	
有色溶存有機物 (CDOM)	-50~+100%	80 /70%	80 /70%	■CDOMで低見積もりの傾向がある。	
懸濁物質濃度 (SS)	-50~+100%	<mark>100</mark> /60%	(90 ⁷ 260%	域で不安定。	
490nm吸光係数 (K490) _35~+50°		50 / <mark>60</mark> %	50 /60%		
海面水温 (SST)	0.6K	0.83/0.74K	0.66/0.70K (day/night)	●検証データが増加 ●誤差の期間変動がありそう(GLI校正の問題?)	

大体はOKだが、残る問題点も明らかになった →今後の課題

- ・吸収性エアロゾル補正の高精度化を行なう。
- ・沿岸域での基礎データの収集と水中/大気アルゴリズムの改良・評価を行なう。
- ・将来ミッションに向け、250mデータにおける大気補正・CHLA処理を改善する。
- ・MODISデータへのGLIアルゴリズム適用と検証、利用実証を行なう(3月実装)。
- ・基礎生産カや蛍光プロダクトを検討する(研究プロダクト)。

Acknowledgement

現場データ取得に御協力いただいた皆様に感謝いたします。

	Cruise	nLw	CHL	SS	CDOM	k490	tau	Observer/ Provider
1	Univ. Lille SIMBAD-A	287					281	nLw collected by P-Y Deschamps, and provided by R. Frouin
2	CALCOFI (SIMBAD)	3-10					11	R. Frouin, SIO
3	IMECOCAL(SIMBAD)	7-10					10	R. Frouin, SIO
4	P500304 (SIMBAD)	3-6					7	D. Cutchin, SIO
5	MOBY ^{*1}	18-21					22	MOBY nLw by D. K. Clark, NOAA, AERONET Lanai-site by C. McClain
6	SURF_CAL	2-6	39		2			B. G. Mitchell, SIO
7	Nagasaki Ferry	3-5						Ishizaka, Nagasaki Univ
8	ishysmpl20030414	0-1						Ishizaka, Nagasaki Univ
9	REDTIDE20030722	3-12	16	13	14	12		Ishizaka, Nagasaki Univ
10	ishysmpl20031017	1-3	2			3		Ishizaka, Nagasaki Univ
11	Nagasaki-Maru 03058	0-1	0	0-1	2-3	0-1		Ishizaka, Nagasaki Univ
12	Nagasaki-Maru 03421		4					Ishizaka, Nagasaki Univ
13	Kakuyo-Maru 030519	1	2	1	2	1		Ishizaka, Nagasaki Univ
14	Nagasaki-Maru 030711		1					Ishizaka, Nagasaki Univ
15	Kakuyo-Maru 031017	4	5			4		Ishizaka, Nagasaki Univ
16	NPEC 200305	1-6	14	9	6	5		NPEC, Ishizaka, Nagasaki Univ
17	-	0-1	1	1	1	1		Ishizaka, Nagasaki Univ
18	Tansei-Maru 030711		3		3			Ishizaka, Nagasaki Univ
19	KH0302	2-3	3		2			Sasaoka, JAXA/EORC
20	Hakodate	3-8	8					Saito, Hokkaido Univ
21	Tokyo&Sagami-Bay	4	8	4				Kishino, Tokyo Kaiyo Univ.
22	New Caledonia		15	3	3			Dupouy and Neveux, LODYC
23	Cruise0301		2					Yokouchi & Kiyomoto, Seikai NFRI
24	Cruise0305	0-6	17			6		Yokouchi & Kiyomoto, Seikai NFRI
25	YK0306	0-1				0-1		Yokouchi & Kiyomoto, Seikai NFRI
26	SPINUP	1	5			1		Saito, Tohoku NFRI
27	SY0306 (off Tohoku)		3					Tohoku NFRI
28	GOT20031009	4-10	10	9	10	10		Siripong and Matsumura
29	SURF_IME	5	5					B. G. Mitchell, SIO
30	Jetfoil trios 20030923	0-2						Ishizaka, Nagasaki Univ
31	jetfoil trios 20030926	9-12						Ishizaka, Nagasaki Univ
32	Chiba-Monitoirng Post		17					Japan Coast Guard