# Development of alternative-band algorithms for ADEOS-2 GLI ocean color products

H. Murakami\*1, W. Chen\*1, Y. Park\*1,
Y. Mitomi\*2, S. Kawamoto\*2, M. Yoshida\*2,
W. Takahashi\*3, and I. Asanuma\*1
\*1: NASDA /EORC, \*2: RESTEC, \*3: JNUS

### GLI ocean bands assumed to be saturated

|                | Wavelength<br>[nm] | Maximum<br>radiance Spec.<br>high/low gain<br>[W/m²/str/µm] | Maximum                                                     | Ratio of                                       | Used bands in Standard Alg.s |               |               |             |               |
|----------------|--------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------|------------------------------|---------------|---------------|-------------|---------------|
| Channel<br>No. |                    |                                                             | radiance PFM<br>high/low gain<br>[W/m <sup>2</sup> /str/µm] | Saturation<br>area [%]<br>estimated<br>by OCTS | OTSK1a<br>Atmos. corr        | OTSK2<br>CHLA | OTSK5<br>K490 | OTSK6<br>SS | OTSK7<br>CDOM |
| 1              | 380                | 365                                                         | 726                                                         | 0                                              |                              |               |               |             | -             |
| 2              | 400                | 139                                                         | 172                                                         | 0                                              |                              |               |               |             |               |
| 3              | 412                | 130                                                         | 136                                                         | 0                                              |                              |               |               |             |               |
| 4              | 443                | 109 /560                                                    | 114 /718                                                    | 0                                              |                              | Alt           |               |             | Ori           |
| 5              | 460                | 108 /624                                                    | 131 /813                                                    | 0                                              |                              | Alt           | Alt           |             |               |
| 6              | 490                | 86                                                          | 66                                                          | 18                                             |                              | Ori           | Ori           | Ori         |               |
| 7              | 520                | 64 /539                                                     | 97 /614                                                     | 0                                              |                              | Alt           |               | Ori         | Ori           |
| 8              | 545                | 56 /549                                                     | 99 /634                                                     | 0                                              |                              | Alt           | Alt           |             |               |
| 9              | 565                | 47                                                          | 41                                                          | 4                                              |                              | Ori           | Ori           | Ori         |               |
| 10             | 625                | 33                                                          | 37                                                          | nearly 0                                       |                              |               |               |             |               |
| 11             | 666                | 26                                                          | 23                                                          | 10                                             |                              |               |               |             |               |
| 12             | 680                | 24                                                          | 24                                                          | 10                                             |                              |               |               |             |               |
| 13             | 678                | 438                                                         | 400                                                         | 0                                              | <u>Alt</u>                   |               |               |             |               |
| 14             | 710                | 18                                                          | 17                                                          |                                                |                              |               |               |             |               |
| 15             | 710                | 311                                                         | 275                                                         | 0                                              | <u>Alt</u>                   |               |               |             |               |
| 16             | 749                | 14                                                          | 12                                                          | 33                                             | Ori                          |               |               |             |               |
| 17             | 763                | 350                                                         | 350                                                         | 0                                              | Alt                          |               |               |             |               |
| 18             | 865                | 9                                                           | 8                                                           | 30                                             | Ori                          |               |               |             |               |
| 19             | 865                | 304                                                         | 260                                                         | 0                                              | <u>Alt</u>                   |               |               |             |               |
| 24             | 1050               | 203                                                         | 240                                                         | 0                                              | <u>Alt</u>                   |               |               |             |               |
| 26             | 1240               | 138                                                         | 205                                                         | 0                                              | <u>Alt</u>                   |               |               |             |               |

## Personnel



*Modify operational codes* 

# Can we use land gain bands, CH13 (678nm), CH19 (865nm), CH26(1240nm)?

- Study using numerical simulated data
  - Study of aerosol selection schemes
  - Study of noise levels
- Study using MODIS Level 1B data
  - Noise level
  - Study of switching schemes
  - Study of noise reduction schemes
  - Study of negative nLw problem

### **Evaluation of algorithm error and noise caused by alternative bands using numerical model**

#### Bias and Standard Deviation of each nLw

| Atmos. corr.<br>band | CH16-18 |        | CH13-19 |        | CH1    | 9-24  | CH19-26 |        |  |
|----------------------|---------|--------|---------|--------|--------|-------|---------|--------|--|
| nLw band             | Bias    | SD     | Bias    | SD     | Bias   | SD    | Bias    | SD     |  |
| nLw 443              | 0.0432  | 0.0170 | 0.1720  | 0.0479 | 0.1920 | 0.215 | 0.477   | 0.0621 |  |
| nLw 460              | 0.0383  | 0.0167 | 0.1630  | 0.0473 | 0.1820 | 0.210 | 0.466   | 0.0628 |  |
| nLw 490              | -0.1070 | 0.0124 | -0.0130 | 0.0353 | 0.0029 | 0.172 | 0.237   | 0.0550 |  |
| nLw 520              | -0.0466 | 0.0107 | 0.0232  | 0.0282 | 0.0362 | 0.140 | 0.226   | 0.0475 |  |
| nLw 545              | -0.0565 | 0.0097 | -0.0005 | 0.0243 | 0.0111 | 0.125 | 0.181   | 0.0450 |  |
| nLw 565              | -0.0338 | 0.0071 | 0.0115  | 0.0201 | 0.0217 | 0.110 | 0.171   | 0.0398 |  |

Unit [mW/cm<sup>2</sup>/str/µm]

### **Test by MODIS Level 1B data**

## Large difference is appear maybe due to calibration characteristics of MODIS L1B

L2L09260205a (749-865nm) param=rmodel n0



L2L09260205b (678-865L ) param=rmodel n0



L2L09260205c (865L-1240) param=rmodel n0



[]

GLI alternative algorithm study

### Adjustment by aerosol models selected by OTSK1a

We corrected the alternative near infrared (NIR) radiance to select same aerosol models with ones by the original NIR bands. The same procedures will be need in the real GLI operation after launch.



## **Results of aerosol selection after the NIR adjustment**

L2L09260205a (749-865nm) param=rmodel n1



L2L09260205b (678-865L ) param=rmodel n1



L2L09260205c (865L-1240) param=rmodel n1



GLI alternative algorithm study

6

3

Q

12

## nLw 443nm by CH16-18, CH13-19 and CH19-26

L2L09260205a (749-865nm) param=nLw443 o1



saturation in this image

L2L09260205b (678-865L ) param=nLw443 n1



L2L09260205a (749-865nm) param=nLw443 sw





GLI alternative algorithm study

 $[mW \text{ cm}^{-2} \text{ st}\overline{r}^1 \text{ um}^{-1}]$ 

## nLw 545nm by CH16-18, CH13-19 and CH19-26

L2L09260205a (749-865nm) param=nLw545 n1



L2L09260205b (678-865L ) param=nLw545 n1





L2L09260205c (865L-1240) param=nLw545 n1





## by CH16-18, CH13-19 and CH19-26

L2L09260205a (749-865nm) param=chla n1

CHLA



[mg m<sup>-3</sup>]

L2L09260205b (678-865L ) param=chla n1



L2L09260205c (865L-1240) param=chla\_n1





GLI alternative algorithm study

3

[mg m<sup>-3</sup>]

10 30

0.01 0.03 0.1 0.3 1

### Scatter diagram of nLw443 X-axis: CH16-18 Y-axis left: CH13-19, right: CH19-26



## **Switching Scheme**



### An example of weights in the witching ratio1 for CH16 and CH16 ratio2 for CH18 and CH19



### M<sub>select</sub>, nLw443 and CHLA by the switching scheme

L2L09260205a (749-865nm) param=rmodel sw



6 [] 12

L2L09260205a (749-865nm) param=nLw443 sw



1 2 3 4 [mW cm <sup>-2</sup> str<sup>1</sup> um<sup>-1</sup>] L2L09260205a (749-865nm) param=chla sw





## Switching Scheme

- We can use high gain bands without gaps by using the weighted switching schemes.
- Problems of noise and negative nLw are enlarged in the area switching to CH13-19.
- We should investigate their solutions.

### **Study of noise reduction** test the following three methods, a), b), and c)

Lt<sub>gli</sub><sup>noise</sup>(CH13) and Lt<sub>gli</sub><sup>noise</sup>(CH19)  $\downarrow$  ...Aerosol model selection by  $Lt_{gli}(CH13)$  and  $Lt_{gli}(CH19)$  $M_{select}, \tau_a 865$ ...a) 3×3 average of  $M_{select}$  and  $\tau_a 865$  $\downarrow$  ...b) 3×3 average of  $M_{select}$ ...c)  $3 \times 3$  average of  $M_{select}$  excluding near cloud  $M_{select}$  smooth,  $\tau_a 865^{smooth}$  or  $M_{select}$  smooth,  $\tau_a 865$ ... Estimation of  $\rho_{a+ma}$  in visible bands  $nLw(\lambda)$  and CHLA

### nLw 443 by CH13-19

### original, applying noise reduction methods (a), (b) and (c)

L2L09260205b (678-865L ) param=nLw443 n1



|     |        |        | :                  |    |
|-----|--------|--------|--------------------|----|
| 0.5 | 0, 875 | 1, 25  | 1.625              | 2  |
|     | [mW cm | -2 str | um <sup>-1</sup> ] | 10 |



[m\ cm -2 str um -1]

L2L09260205b (678-865L ) param=nLw443 sb



L2L09260205b (678-865L ) param=nLw443 sc



[mW cm -2 str um 1]

## **Conclusion of the noise reduction**

- If both τ<sub>a</sub> and M<sub>select</sub> are averaged, ripple pattern (by the atmosphere ?) appears in some cases.
- The best way seems to be averaging only
   M<sub>select</sub> excluding near cloud, *i.e.*, *scheme (3)*.
- Noise is decreased as follows,
   0.053→ (a) 0.029, (b) 0.035, and (c) 0.038 [mW cm<sup>-2</sup> µm<sup>-1</sup> str<sup>-1</sup>]

## A Study of Negative nLw problem

modify  $M_{select}$  to avoid that  $\rho_w(412nm)$  become negative

Lt<sub>gli</sub>(CH13 and CH19)

 $\downarrow$  ...Aerosol model selected by the normally

 $M_{select}$ ,  $\tau_a 865$  at nine models

 $\downarrow$  ...calculate  $\rho_w$  at 412nm

 $\rho_{\rm w}(412)$ 

 $\downarrow$  ...*if*  $\rho_w(412) > 0.005$ ; modify  $M_{select}$  to adjust  $\rho_w(412) = 0.005$ 

 $M_{select}^{adj}$ ,  $\tau_a 865$  at  $M_{select}^{adj}$ 

 $\downarrow$  ...*Estimate*  $\rho_{a+ma}$  *in visible bands* nLw(λ) and CHLA

### *M<sub>select</sub>, nLw443, nLw545 and CHLA* by original and the M<sub>select</sub>-adjustment schemes

L2L09260205b (678-865L ) param=rmodel n1



Original

Mselect-adjustment

0

3

L2L09260205b (678-865L ) param=rmodel ng



[]

9

12

L2L09260205b (678-865L ) param=nLw443 n1



L2L09260205b (678-865L ) param=nLw443 ng



[mW cm -2 str1 um -1]

L2L09260205b (678-865L ) param=nLw545 n1



L2L09260205b (678-865L ) param=nLw545 ng



1.5

[mW cm -2 str1 um 1]

2.25

3

L2L09260205b (678-865L ) param=chla n1



L2L09260205b (678-865L ) param=chla ng





#### GLI alternative algorithm study

0.75

## A study of negative nLw problem

By modifying  $M_{select}$  as avoiding negative  $\rho_w(412nm)$ ,  $M_{select}$  and nLw close to values expected by the original bands, CH16-18.

M<sub>select</sub> <sup>adj</sup> gives better results but not correct ones. This approach should be applied as (e.g.,) first guess of NIR in iteration schemes.

# **Remained problems and schedule around the ADEOS-2 launch**

|                                | 2001/                                                                                                  |       |       | 2002/ |                 |             |            | 2003/            |       |       |
|--------------------------------|--------------------------------------------------------------------------------------------------------|-------|-------|-------|-----------------|-------------|------------|------------------|-------|-------|
| Items to be solved             | 05-06                                                                                                  | 07-09 | 10-12 | 01-03 | 04-06           | 07-09       | 10-12      | 01-03            | 04-06 | 07-09 |
|                                | <i>Events</i> $\diamond$ <i>GLIWS</i> $\diamond$ <i>First image</i> $\diamond$ <i>EOC data release</i> |       |       |       |                 |             |            |                  | lse   |       |
|                                |                                                                                                        |       |       | ♦Laur | ıch <b>♦</b> Re | gular ob se | rvation mo | $de \rightarrow$ |       |       |
| Study of iteration method      |                                                                                                        |       |       |       |                 |             |            |                  |       |       |
| LUT modification               |                                                                                                        |       |       |       |                 |             |            |                  |       |       |
| Operational experiments        | other satellite dataGLI data                                                                           |       |       |       |                 |             |            |                  |       |       |
| Modify codes & documents       | revise                                                                                                 |       |       |       |                 |             |            |                  |       |       |
| 710nm water vapor correction   | ?                                                                                                      |       |       |       |                 |             |            |                  |       |       |
| 763nm oxygen correction        | ?                                                                                                      |       |       |       |                 |             |            |                  |       |       |
| Study of multiple-NIR methods  | ?                                                                                                      |       |       |       |                 |             |            |                  |       |       |
| Cal/Val of GLI L1B and L2      | A/B/CDD                                                                                                |       |       |       |                 |             |            |                  |       |       |
| Applying alternative algorithm |                                                                                                        |       |       |       | a/bb/c-         | do          | d/eb/c     |                  |       |       |

- a) Operation test using CH16-18 and CH13-19 independently  $\rightarrow$  *First-light image*
- b) Noise reduction, stripe-noise reduction, avoiding negative-nLw
- c) Relative correction of NIR, applying switching schemes  $\rightarrow$  *First version (First image?)*
- d) Study of atmospheric correction by other candidates,
  - CH15-19 (considering water-vapor absorption),
  - CH17-19 (considering oxygen absorption), CH19-24, and CH19-26
- e) Decide optimal scheme from on-orbit data  $\rightarrow Next \ versions$

## Conclusion

- We can achieve the minimum goal (very primal usage) just using CH13-19 instead of CH16-18.
  - We recommend the following solutions to satisfy research activities and data promotion.

**1.** Switching CH16-18 and CH13-19 around the saturation radiance smoothly (switching scheme).

2. Additional noise should be reduced by averaging 3 pixel  $\times$ 3 line of  $M_{select}$  when using CH13-19.

3. We should improve negative-nLw problem by modification of  $M_{select}$  by  $\rho_w$  at the shortest VIS band with an iteration scheme, for example.

## Conclusion

next steps

- We may have the following items for the next step.
- 1. Optimization of construction of look-up table, which is used to derive  $M_{select}$ , and interpolation ways from the table.
- 2. Evaluation of in-water optical models in the iteration process, and ways to be applied to the GLI operation code.

The report of the alternative algorithm study has been open from GLI Web PI's Door





## Activity of NASDA GLI Calibration 4<sup>th</sup> Group

Application & sevenceMembers of the 4th Group<u>H. Murakami</u><br/>chairSensor developmentY. Mitomi, M. Yoshida, S<br/>Kawamoto, R. Higuchi,<br/>I. Asanuma, N. MatsuuraK. Tanaka, S. Kurihara,<br/>K. Isono, Y. Okamura,<br/>Y. Okamura,<br/>Y. TangeA. Ikejyo, H. Yatagai,<br/>Y. IshidoY. Tange

GLI alternative algorithm study

Ground system



Cited from K. Tanaka (31 Oct., 2001)

## **Objectives** in the 4th Group

- Objectives of GLI NASDA Calibration teams are to <u>improve</u> <u>Level 1B data</u> for satisfying user requirements (both PI and the public) as soon as possible.
- Objectives of our 4th group are to <u>evaluate and monitor GLI</u> <u>characteristics and improve Level 1 operation algorithm</u> except for internal lamp, solar and black body calibrations (they are in charge of 1<sup>st</sup> and 2<sup>nd</sup> groups). In addition, the 6<sup>th</sup> group discuss common problems and help NASDA calibration teams (1<sup>st</sup> to 6<sup>th</sup> groups) share common information.
- The 4th group is planning which items should be done, and how can we evaluate <u>on-board calibration functions and</u> <u>optical performance of GLI during the initial checkout</u> <u>period</u>. We will carry out them as a member of the GLI initial checking team.

## Items to be done

| Items                                                     | Data source                                                     |
|-----------------------------------------------------------|-----------------------------------------------------------------|
| Scan mirror reflectance depending on its sides and angle  | <b>PFT, on-board calibration, and earth observation data</b>    |
| Detector correlated noise                                 | <b>PFT, on-board calibration, and</b><br>earth observation data |
| Periodic noise of MTIR                                    | <b>PFT, on-board calibration, and earth observation data</b>    |
| SNR and NE∆T                                              | <b>PFT, on-board calibration, and earth observation data</b>    |
| Dynamic range, Over-saturation and linearity              | <b>PFT</b> , and earth observation data                         |
| Continuity between piece-wise linear gains                | <b>PFT</b> , and earth observation data                         |
| Transitional response, stray light, cross talk<br>and MTF | <b>PFT</b> , and earth observation data                         |
| Stability of dark current                                 | <b>PFT, deep space, and</b><br>night time observation data      |
| Stability of sensor and on-board monitors                 | Telemetry and monitor outputs                                   |

#### ADEOS-2 GLI Initial checkout outlines



*Cited from K. Tanaka (31 Oct., 2001)* 





Cited from K. Tanaka (31 Oct., 2001)



### Calibration activity in GLI cal/val phase (~L+12M) & Implementation schedule to Level 1 software (DRAFT)



Cited from K. Tanaka (31 Oct., 2001)

# An example of activities **Correction of detector correlated noise**

The detector correlated noise is <u>defined as residual errors after</u> <u>Level 1 processing</u>. The correction applies to radiometric corrected but detector-not-resgistrated Level 1B radiance,  $L_{i,i}^{original}$ .

 $\begin{aligned} L_{i,j}^{corrected} &= a_{i,j} \cdot L_{i,j}^{original} & \dots(1) \\ i: detector (1 < i < 12 \times 2: mirror sides A/B are included in the i) \\ j: band (1 < j < 36), \end{aligned}$ 

The " $a_{i,j}$ " assumed to be related with input radiance, bands *j*, detectors (× scan-mirror sides) *i*, and scan-mirror angle  $\phi$ , *i.e*,

 $a_{i,j} = b O_{i,j} + b I_{i,j} \cdot L_{i,j} + b Z_{i,j} / L_{i,j} + b Z_{i,j} \cdot L_{i,j} + b Z_{i,j} \cdot \phi^2 \dots (2)$ 

## **Detector correlated noise**

The " $b_{i,j}^*$ " are estimated by followings.

- 1. Sampling smooth areas *n* (*L* lines and *K* pixels, normally 200×200) from earth observations of detector-non-resgistrated L1B (1<n<N).
- 2. Derive  $a_{i,j,n}$  Minimizing *E*, and averaged radiance  $\overline{L_{i,j}^{original}}_{n}^{K \times L average}$  for each sub-image *n*.

$$E = \sum_{l=0}^{L-1} \left\{ \sum_{k=0}^{K-1} a_{i,j,n} \left( DN_{l,k}^{j,n} - O^{j,n} \right) - a_{i+1,j,n} \left( DN_{l+1,k}^{j,n} - O^{j,n} \right) \right\}^2 \dots (3)$$

- 3. Examine statistical significance of terms,  $b^*_{i,j}$  in polynomial expression (1) using  $a_{i,j,n}$ .
- 4. Derive  $b_{i,j}^*$  by fitting to (1) excluding insignificant terms  $b_{i,j}^*$ .



#### FILE NAME : MOD021KM.A2000170.0730.002.2000180093300 BAND : 8 MODEL7

<BEFOR CALIBRATION> E= 3.5483647e+08 <AFTER CALIBRATION> E= 70536243.



*Expression by significant terms;*  $a_{i,j}=b0_{i,j}+b1_{i,j}\cdot L_{i,j}+b4_{i,j}\cdot \phi$ 

104 156 207 Jiance

## Working Schedule

