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OUTLINE OF TALK

e Brief Overview of Theoretical Aspects and Retrieval Principles:
=> Which GLI Channels Do We Use and Why?
—> Short Description of Retrieval Procedure.

e Atmospheric Correction and Retrieval Products:

=> Cloud Mask
—=> Aerosol Model and Optical Depth

—> Snow Grain Size and Impurities
—=> Spectral Snow Albedo

e Algorithm Testing and Validation:
—> Use of Synthetic Data — Numerical Testbed
—> Testing Against MODIS Data
=> Field Validations Ultimately Required

e Summary
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Theoretical Aspects and Retrieval Principles (1)

Our algorithm development is based on:

e the discrete-ordinate-method (DISORT) [see Refs. 2-4]| to com-
pute the top-of-the-atmosphere (TOA) radiances, because:

=> this method allows radiances to be computed at arbitrary user-
specified polar and azimuthal angles.

We expand the phase function as:

p(7,c080) = pr s @, ) = (2 — Sy )™ () cosm(e — ) (1)

m=0

p (!, w) = sV U4-1) gy (T)A (W )AT (u); A (u) = V(l —m)l/ (L +m) P (u);

l=m

gi(1) = 5 11 P(cos ©)p(T, cos ©)d(cos ©); 7 is the vertical optical depth;

(u' = cos®',¢') and (u = cosf, ¢) are the cosine of the polar angle and
the azimuthal angle, before and after the scattering, respectively.
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Theoretical Aspects and Retrieval Principles (2)

e Since Eq. (1) is a Fourier cosine series, we expand the radiance
in the same way:

(T, u, o, Ap) = 25201 I (7, u, pg)cos(mAgp) (2)

— 11y = cosby is the cosine of the solar zenith angle 6,

— Ap = ¢y — ¢ is the relative azimuth angle between the incident
solar beam direction ¢; and the sensor viewing direction ¢

— I(7, po, u, Ag) is the radiance
— I"(7, g, u) is the m-th Fourier component of the radiance

e Fach Fourier component satisfies the radiative transfer equation:

uIm(TC’Z;L_L’ o) _ I™(7, u, o) — ag—)/llpm(u, u NI (7,0 )du' — Q™ (T, u) (3)

e Solution of Eq. (3) for each m yields (7, u, uy), and substitution
in Eq. (2) yields I(7,u, po, A¢).
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Theoretical Aspects and Retrieval Principles (3)

e We store the I"(1,u, py) terms [see Eq. (2)] in the lookup table.

e The TOA radiance I(7,u, uy, A¢) is then computed based on Eq.
(2) using an interpolation method.

e We employ a cubic spline interpolation method [see Ref. 5| for the
polar and solar zenith angle dependence of the radiance.

e Use of Eq. (2) implies an accurate analytic treatment of the
azimuth dependence of the radiance.
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Figure 1: Reflected radiances in channels 5 and 26 as a function of mass fraction of soot and grain size.
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Flow Chart of Retrieval Algorithm
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Figure 2.2 Flow chart of the retrieval a gorithm for snow grain size and impunty concentration. 1, 15 the aerosol
optical depthy Rethe snow grain aze, and mp the impurity concentration, The p,(26), g, 0190, and g 050 are the
satellite-measured reflectances & GLI channels 26, 19 and 5, respectively. The g 4019015 the computed
reflectance (from lookup table) at GLI channel 19



Wavelength-dependence of Photon Penetration Depth (see Ref. 1)
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Figure 2: Histograms of retrieved snow grain size from AVIRIS channels 54, 73, 93, and 145.



Atmospheric Correction (1)

Atmospheric Correction means Removal of Aerosol Contribution
to TOA Radiance, because:

e Rayleigh scattering can be computed accurately;

e absorption by trace gases is unimportant in channels 1 and 5.

Removal of the aerosol contribution to TOA radiance is difficult:
e large spatial and temporal variation in aerosol properties

e high albedo of snow surface.

e Use of incorrect aerosol model implies TOA reflectance errors:

— as large as 20% for weakly-absorbing aerosols;

—an error of 50% or more for strongly absorbing aerosols.

e Such large errors will cause a failure of the retrieval of snow grain
size and impurity.

e Proper selection of aerosol model is critically important for ac-
curate retrieval of snow grain size and impurity.



Atmospheric Correction
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Figure 3: Relative deviations in TOA reflectance in GLI channels 5 and 19 resulting from use of wrong aerosol models. The right panels contain the input

grain size and impurity for each test pixel.
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Atmospheric Correction (3)

How Can We Do Atmospheric Correction over Bright Surfaces like
Snow? The Answer is:

e the reflectance in channel 5 decreases almost linearly with optical
depth when the albedo is higher than about 0.5;

Note also that:

e the reflectance in channel 5 increases almost linearly with optical
depth when the albedo is lower than about 0.5.

Hence:

e Aerosol Removal is Feasible over Bright as Well as Dark Surfaces!!
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Figure 4: TOA reflectance at GLI channel 5 as a function of aerosol optical depth and surface reflectance. (a): non-absorbiing aerosols; (b):

aerosols.
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Atmospheric Correction (5)

For a Lambertian surface the reflectance is given exactly by:

Psur - 7(93) ’ Ij’<ev>
0 (91}7 sur) — Fatm 9@7 sur — 0 —= .
prot(Bv, Psur) = Patm(Ou, p ) + —

where
® 0, = solar zenith angle; 6, = polar viewing angle;
® 7 (6,) = diffuse transmittance for illumination of the atmosphere from above;
e 7 (0,) = diffuse transmittance for illumination of the atmosphere from below;
e p = spherical albedo for illumination of the atmosphere from below:

Solving for pg,-, we find:

Psur — ,0(;/(1 —+ Pc - 5 ) (5)
where

pe = T|ptot — Patm)/ T (0s) - T<HU>°
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Atmospheric Correction (6)
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Figure 5: Retrieved Lambertian albedo ps,, as a function of aerosol optical depth [(a) and (b)], and as a function of aerosol model [(c) and (d)].
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Reflectance at TOA p, at ch.5

Figure 6: TOA reflectance p;.¢ as a function of aerosol optical depth for model “average-continental” (RH = 70%). (a): snow grain size = 200 ym and snow
impurities (from top to bottom): 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5 2.0, 2.5 x10~% ppmw (parts per million by weight). (b): snow impurity = 0.2 x10~% ppmw
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Cloud moask results
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Validation — Synthetic Data (2)

Figure 8: Aerosol Model. LEFT PANEL: Input data. RIGHT PANEL: Retrieved results.
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Validation — Synthetic Data (3)

Figure 9: Aerosol Optical Depths. LEFT PANEL: Input data. RIGHT PANEL: Retrieved results.

19



Validation — Synthetic Data (4)

Figure 10: Snow Grain Size. LEFT PANEL: Input data. RIGHT PANEL: Retrieved results.
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Validation — Synthetic Data (5)

Figure 11: Snow Impurity. LEFT PANEL: Input data. RIGHT PANEL: Retrieved results.
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Validation — Synthetic Data (6)

Figure 12: Retrieval (%). LEFT PANEL: Grain Size. RIGHT PANEL: Impurity.
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MODIS Data —Greenland (1)

unknown

Figure 13: LEFT PANEL: Cloud mask. RIGHT PANEL: Aerosol optical depth. Retrieved from MODIS data on June 18, 2000 over Greenland..
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MODIS Data —Greenland (2)

Figure 14: LEFT PANEL: Grain size. RIGHT PANEL: Snow impurity concentration. Retrieved from MODIS data on June 18, 2000 over Greenland.
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MODIS Data — Central United States (1)

(unknown)

Figure 15: LEFT PANEL: Cloud mask. RIGHT PANEL: Aerosol optical depth. Retrieved from MODIS data on November 2, 2000 over United States.
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MODIS Data — Central United States (2)
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Figure 16: LEFT PANEL: Grain size. RIGHT PANEL: Snow impurity concentration. Retrieved from MODIS data on November 2, 2000 over United States.
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Summary

In summary:

e We have reviewed the snow grain size and retrieval algorithm
with an emphasis on atmospheric correction issues.

e It has been tested against synthetic data and appears to be ro-
bust. Application to MODIS data yields reasonable results.

e Testing against field data is necessary when GLI data become
available.

These algorithms can be used to provide:
e Cloud mask

e Aerosol optical properties

e Snow grain size and impurites

e Spectral albedo
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