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OUTLINE OF TALK

• Brief Overview of Theoretical Aspects and Retrieval Principles:

=> Which GLI Channels Do We Use and Why?

=> Short Description of Retrieval Procedure.

• Atmospheric Correction and Retrieval Products:

=> Cloud Mask

=> Aerosol Model and Optical Depth

=> Snow Grain Size and Impurities

=> Spectral Snow Albedo

• Algorithm Testing and Validation:

=> Use of Synthetic Data – Numerical Testbed

=> Testing Against MODIS Data

=> Field Validations Ultimately Required

• Summary
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Theoretical Aspects and Retrieval Principles (1)

Our algorithm development is based on:

• the discrete-ordinate-method (DISORT) [see Refs. 2-4] to com-
pute the top-of-the-atmosphere (TOA) radiances, because:

=> this method allows radiances to be computed at arbitrary user-
specified polar and azimuthal angles.

We expand the phase function as:

p(τ, cos Θ) = p(τ, u′, φ′; u, φ) =
2M−1∑
m=0

(2 − δ0,m)pm(u′, u) cos m(φ′ − φ) (1)

pm(u′, u) = ∑2M−1
l=m (2l+1)gl(τ )Λm

l (u′)Λm
l (u); Λm

l (u) =
√
(l − m)!/(l + m)!Pm

l (u);

gl(τ ) = 1
2

∫+1
−1 Pl(cos Θ)p(τ, cos Θ)d(cos Θ); τ is the vertical optical depth;

(u′ = cos θ′, φ′) and (u = cos θ, φ) are the cosine of the polar angle and
the azimuthal angle, before and after the scattering, respectively.
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Theoretical Aspects and Retrieval Principles (2)

• Since Eq. (1) is a Fourier cosine series, we expand the radiance
in the same way:

I(τ, u, µ0, ∆φ) =
2M−1∑
m=0

Im(τ, u, µ0)cos(m∆φ) (2)

– µ0 = cosθ0 is the cosine of the solar zenith angle θ0

– ∆φ = φ0 − φ is the relative azimuth angle between the incident
solar beam direction φ0 and the sensor viewing direction φ

– I(τ, µ0, u, ∆φ) is the radiance

– Im(τ, µ0, u) is the m-th Fourier component of the radiance

• Each Fourier component satisfies the radiative transfer equation:

u
Im(τ, u, µ0)

dτ
= Im(τ, u, µ0) −

a(τ )

2

∫ 1
−1 pm(u, u′)Im(τ, u′)du′ − Qm(τ, u) (3)

• Solution of Eq. (3) for each m yields Im(τ, u, µ0), and substitution
in Eq. (2) yields I(τ, u, µ0, ∆φ).
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Theoretical Aspects and Retrieval Principles (3)

• We store the Im(τ, u, µ0) terms [see Eq. (2)] in the lookup table.

• The TOA radiance I(τ, u, µ0, ∆φ) is then computed based on Eq.
(2) using an interpolation method.

• We employ a cubic spline interpolation method [see Ref. 5] for the
polar and solar zenith angle dependence of the radiance.

• Use of Eq. (2) implies an accurate analytic treatment of the
azimuth dependence of the radiance.
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Reflected radiances in Channels 5 and 26

Figure 1: Reflected radiances in channels 5 and 26 as a function of mass fraction of soot and grain size.
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Flow Chart of Retrieval Algorithm
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Wavelength-dependence of Photon Penetration Depth (see Ref. 1)

Figure 2: Histograms of retrieved snow grain size from AVIRIS channels 54, 73, 93, and 145.
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Atmospheric Correction (1)

Atmospheric Correction means Removal of Aerosol Contribution
to TOA Radiance, because:

• Rayleigh scattering can be computed accurately;

• absorption by trace gases is unimportant in channels 1 and 5.

Removal of the aerosol contribution to TOA radiance is difficult:

• large spatial and temporal variation in aerosol properties

• high albedo of snow surface.

• Use of incorrect aerosol model implies TOA reflectance errors:

– as large as 20% for weakly-absorbing aerosols;

– an error of 50% or more for strongly absorbing aerosols.

• Such large errors will cause a failure of the retrieval of snow grain
size and impurity.

• Proper selection of aerosol model is critically important for ac-
curate retrieval of snow grain size and impurity.
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Atmospheric Correction (2)

Figure 3: Relative deviations in TOA reflectance in GLI channels 5 and 19 resulting from use of wrong aerosol models. The right panels contain the input
grain size and impurity for each test pixel.
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Atmospheric Correction (3)

How Can We Do Atmospheric Correction over Bright Surfaces like
Snow? The Answer is:

• the reflectance in channel 5 decreases almost linearly with optical
depth when the albedo is higher than about 0.5;

Note also that:

• the reflectance in channel 5 increases almost linearly with optical
depth when the albedo is lower than about 0.5.

Hence:

• Aerosol Removal is Feasible over Bright as Well as Dark Surfaces!!
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Atmospheric Correction (4)

Figure 4: TOA reflectance at GLI channel 5 as a function of aerosol optical depth and surface reflectance. (a): non-absorbiing aerosols; (b): absorbing
aerosols.
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Atmospheric Correction (5)

For a Lambertian surface the reflectance is given exactly by:

ρtot(θv, ρsur) = ρatm(θv, ρsur = 0) +
ρsur · T (θs) · T̃ (θv)

π(1 − ρsur · ρ̃ )
. (4)

where

• θs = solar zenith angle; θv = polar viewing angle;

• T (θs) = diffuse transmittance for illumination of the atmosphere from above;

• T̃ (θv) = diffuse transmittance for illumination of the atmosphere from below ;

• ρ̃ = spherical albedo for illumination of the atmosphere from below ;

Solving for ρsur, we find:

ρsur = ρc/(1 + ρc · ρ̃ ) (5)

where
ρc = π[ρtot − ρatm]/T (θs) · T̃ (θv).
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Atmospheric Correction (6)

Figure 5: Retrieved Lambertian albedo ρsur as a function of aerosol optical depth [(a) and (b)], and as a function of aerosol model [(c) and (d)].
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Atmospheric Correction (7)

Figure 6: TOA reflectance ρtot as a function of aerosol optical depth for model “average-continental” (RH = 70%). (a): snow grain size = 200 µm and snow
impurities (from top to bottom): 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 1.5 2.0, 2.5 ×10−6 ppmw (parts per million by weight). (b): snow impurity = 0.2 ×10−6 ppmw
and snow grain size (from top to bottom): 50, 100, 200, 500, 1000, 2000 µm.
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Validation – Synthetic Data (1)

Figure 7: The structure of the GLI image.
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Validation – Synthetic Data (2)

Figure 8: Aerosol Model. LEFT PANEL: Input data. RIGHT PANEL: Retrieved results.
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Validation – Synthetic Data (3)

Figure 9: Aerosol Optical Depths. LEFT PANEL: Input data. RIGHT PANEL: Retrieved results.
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Validation – Synthetic Data (4)

Figure 10: Snow Grain Size. LEFT PANEL: Input data. RIGHT PANEL: Retrieved results.

20



Validation – Synthetic Data (5)

Figure 11: Snow Impurity. LEFT PANEL: Input data. RIGHT PANEL: Retrieved results.
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Validation – Synthetic Data (6)

Figure 12: Retrieval (%). LEFT PANEL: Grain Size. RIGHT PANEL: Impurity.

22



MODIS Data –Greenland (1)

Figure 13: LEFT PANEL: Cloud mask. RIGHT PANEL: Aerosol optical depth. Retrieved from MODIS data on June 18, 2000 over Greenland..
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MODIS Data –Greenland (2)

Figure 14: LEFT PANEL: Grain size. RIGHT PANEL: Snow impurity concentration. Retrieved from MODIS data on June 18, 2000 over Greenland.
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MODIS Data – Central United States (1)

Figure 15: LEFT PANEL: Cloud mask. RIGHT PANEL: Aerosol optical depth. Retrieved from MODIS data on November 2, 2000 over United States.
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MODIS Data – Central United States (2)

Figure 16: LEFT PANEL: Grain size. RIGHT PANEL: Snow impurity concentration. Retrieved from MODIS data on November 2, 2000 over United States.
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Summary

In summary:

• We have reviewed the snow grain size and retrieval algorithm
with an emphasis on atmospheric correction issues.

• It has been tested against synthetic data and appears to be ro-
bust. Application to MODIS data yields reasonable results.

• Testing against field data is necessary when GLI data become
available.

These algorithms can be used to provide:

• Cloud mask

• Aerosol optical properties

• Snow grain size and impurites

• Spectral albedo
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