G60

Development of Algorithms for Retrieving Cloud and Aerosol Microphysical Parameters from the GLI

Team

- PI: T. Nakajima (UT/CCSR, teruyuki@ccsr.u-tokyo.ac.jp)
- Cls for Phase-II: T. Y. Nakajima (NASDA/EORC); A. Higurashi (NIES)
- Collaborators: H. Masunaga (EORC), S. Katagiri (UT/CCSR)

Proposed activities

- Algorithm for retrieving cloud optical thickness and effective particle radius
- Algorithm for retrieving aerosol optical thickness and size indices over dark target
- Continental scale network of sky radiometers

Activities as the GLI scientist

Perturbed Asia from cloud and aerosol results

Aerosol

Low clouds

Red: small Blue: large

APEX Experiment

- Amami-Oshima and Fukue-Jima Islands
- E1: 2000.12.13-25
- E2: 2001.4.1-30

Yellow: large $N_{aerosol}$, large N_{cloud} Red: large $N_{aerosol}$, small N_{cloud}

Large contrast between Cheju and Amami Islands

Events of 10 and 11-16 April at Amami

S. Ohta (2001)

Four channel aerosol algorithm

SeaWiFS channel to use:

channel-1 (412nm), -2 (443nm), -6 (670nm), and -8 (865nm)

- Aerosol optical thickness
- Ångström exponent
- Absorbing /Non-absorbing

Application to SeaWiFS data

412nm: Blue, 555nm: Green, 670nm: Red

by Hsu, N. C. (NASA/GSFC) (http://hyperion.gsfc.nasa.gov/Mission/ACEASIA/satellite)

Soil dust: Red, Carbonaceous: Yellow, Sulfate: Green, Sea Salt: Blue

Comparison with ground-based values

Aerosol type classfication by SeaWiFS

0.0 0.5 1.0

Higurashi (2001)

Combined solar reflection and microwave cloud algorithm (GLI+AMSR)

Multi-sensor Cloud Observation

CCSR UNIV. TOKYO

Masunaga et al. (JGR2002)

0.3 0.5 i 2 3 4 Re(VIS&Mic)/Re(VIS&NIR)

D

0.2

5

Example of drizzle quenching in the APEX/ACE-Asian region

CCSR

H. Masunaga (2001)

Low supersaturation CCN counter (Ishizaka, Y., 2000)

Large difference in growth rate off Kyushu Island (east and west)

Relationship between CCN and SO₂/Aerosol particles under 1km in altitude over the sea near the Southwest Islands areas in April 2001

Japanese ACE-Asian cruise with MIRAI

Aerosol plumes observed by the lidar

N. Sugimoto (2001)

Upper dust and lower fine particles

Emission cloud algorithm

- IR method
 - Implementation finished
- AVHRR analysis
 - Long term analysis: 1986-1994
 - Radiative forcing of cirrus

図5.9 下層の雲の雲頂温度を合わせた例

Cirrus from AVHRR: 1986-1994

図6.19 本研究で得られた雲頂温度T[K] 1992年7月

図6.20 ISCCP D2 データでの巻雲の光学的厚さτ1992年7月

図6.22 ISCCP D2 データでの巻雲の雲量[%] 1992年7月

図6.23 本研究で得られた巻雲の雲量[%]1992年7月

Comparison with other products

Simulation of the single scattering albedo with CCSR/NIES Aerosol Climate Model

Takemura et al. (JC, in press)

Radiative forcing of high clouds

図7.11 雲量1の巻雲、巻層雲の放射強制力の散布図

0

0.6

0.7

SSA measurements

CCSR

Mirai RM99-K01 PREDE: 99.2.8-3.10

S. Ohta (2000)

0.8

Single scattering albedo

0.9

1.0