Atmospheric Correction (LTSK-1) for ADEOS-II GLI Land Product: Algorithm and Current Status

Hiroki Yoshioka (Aichi Prefectural University) Alfredo Huete, Kamel Didan (University of Arizona) Hirokazu Yamamoto (NASDA EORC) Yasushi Mitomi (RESTEC)

Yoshioka@ist.aichi-pu.ac.jp

Overview

- I. LTSK-1 Algorithm Description
 - Algorithm Update
- II. Changes in Look-up-tables
 - Using GLI band-pass filters
- III. Algorithm Testing with Satellite Data- EO-1 Hyperion Data
- IV. On-Going and Future Work

Land Product Flow Chart

LTSK-1 Algorithm Update (Summary)

- LTSK-1 code (scientific version) was restructured
- Number of LUTs and LUT structure
- RT code was altered from Gauss-Seidel
 Vector Code to Discrete-Ordinates
 Scalar Code

Assumptions

- Ozone layers are above molecular layer

=> Ozone absorption and molecular scattering are decoupled

- All molecules are above aerosols

=> Molecular layer is decoupled from the aerosol layer

Ozone layer, molecular layer, and (aerosol layer + ground surface) are all decoupled

- System of (aerosol layer + ground surface) is assumed as Lambertian
- Horizontally homogeneous

=> RT simulations can be treated as plane parallel (1-D) problems

$$\rho_{TOA}(\tau_{O3},\tau_R,\theta_s,\theta_v,\varphi_{s-v}) = T_{O3}(\tau_{O3},\theta_s,\theta_v) \left(\rho_R(\tau_R,\theta_s,\theta_v,\varphi_{s-v}) + \frac{T_{R\downarrow}(\tau_R,\theta_s)\rho_s T_{R\uparrow}(\tau_R,\theta_v)}{1 - S_R(\tau_R)\rho_s} \right)$$

11/14/2001

7

Wavelength Dependency and Use of GLI Band-Pass-Filters

Ozone Layer: Two-way Transmittance

Attenuation coefficient is a function of wavelength
 LUT of Band# vs. Ozone attenuation coefficients

Molecular Layer: Path Radiance, Transmittances, Albedo

- Optical thickness (scattering x-sec) depends on wavelength

But, scattering phase function is independent of wavelength
 => RT simulations can be conducted independent of wavelength

Most of LUTs are independent of wavelength

Simulation of Molecular Scattering

$$-\mu \frac{\partial I(\tau, \Omega)}{\partial \tau} + I(\tau, \Omega) = \frac{\overline{\omega}}{4\pi} \int_{4\pi} P_R(\Omega' \to \Omega) I(\tau, \Omega') d\Omega'$$
$$P_R(\Theta) = \frac{3A(1 + \cos^2(\Theta))}{4} + B$$

Surface Source

For path radiance and downward transmittance: monodirectional beam source

 $I(0,\Omega) = I_0 \delta(\Omega - \Omega_0), \ \mu < 0$

For upward transmittance and spherical albedo: isotropic source

 $I(\tau_R, \Omega) = I_s, \ \mu > 0$

Optical thickness of molecular layer: function of wavelength

$$\tau_{R}(\lambda, Z_{s}) = \sigma_{R}(\lambda) \int_{Z_{s}}^{Z_{TOA}} N(Z) dZ$$

LUTs for path radiance, transmittances and spherical albedo, are independent of BPFs. 11/14/2001 9

Elevation vs. Tau_R for Each Band

- Molecular Density Integration along Z

- Band averaged microscopic cross section

 (m_r)

Elevation vs. Tau_R for Each GLI Band

Number of elevation grid: 17

-600 (m), 0, 600, 1200,1800, 2400, 3000, 3600, 4200, 4800, 5400, 6000, 6600, 7200, 7800, 8400, 9000

Elevation is related to Tau_R through standard pressure and temperature (US62)

- Pressure and temperature profile is fixed at each pixel

BPFs are used to obtain band-averaged cross section

Bi-Directional Reflectance

$$\rho_{TOA}(\tau_{O3},\tau_R,\theta_s,\theta_v,\varphi_{s-v}) = T_{O3}(\tau_{O3},\theta_s,\theta_v) \left(\rho_R(\tau_R,\theta_s,\theta_v,\varphi_{s-v}) + \frac{T_{R\downarrow}(\tau_R,\theta_s)\rho_s T_{R\uparrow}(\tau_R,\theta_v)}{1 - S_R(\tau_R)\rho_s} \right)$$

Bi-Directional Reflectance

LUT-1

Mono-Directional Surface Source

Molecular Layer

Free Boundary

LUT-1 Size:

9 (solar-zenith) x 6 (view-zenith) x 13 (azimuth) x 41 (Tau_R) = 28,782 (words)

Previously, $9 \ge 6 \ge 13 \ge 17$ (elevation) ≥ 13 (ozone) ≥ 19 (bands) = 226,749 (words), (7.8 times larger)

Directional-Hemispherical Transmittance

$$\rho_{TOA}(\tau_{O3},\tau_R,\theta_s,\theta_v,\varphi_{s-v}) = T_{O3}(\tau_{O3},\theta_s,\theta_v) \left(\rho_R(\tau_R,\theta_s,\theta_v,\varphi_{s-v}) + \frac{T_{R\downarrow}(\tau_R,\theta_s)\rho_s T_{R\uparrow}(\tau_R,\theta_v)}{1 - S_R(\tau_R)\rho_s}\right)$$

Molecular Layer

Free Boundary

LUT-2

Directional-Hemispherical Transmittance

LUT-1 Size: 9 (solar-zenith) x 41 (Tau_R) = 369 (words)

Hemispherical-Directional Transmittance

$$\rho_{TOA}(\tau_{O3},\tau_R,\theta_s,\theta_v,\varphi_{s-v}) = T_{O3}(\tau_{O3},\theta_s,\theta_v) \left(\rho_R(\tau_R,\theta_s,\theta_v,\varphi_{s-v}) + \frac{T_{R\downarrow}(\tau_R,\theta_s)\rho_s T_{R\uparrow}(\tau_R,\theta_v)}{1 - S_R(\tau_R)\rho_s} \right)$$

Hemispherical-Directional Transmittance

LUT-3

Free Boundary

Molecular Layer

Isotropic Surface Source

LUT-1 Size: 9 (solar-zenith) x 41 (Tau_R) = 369 (words)

Spherical Albedo (Bi-Hemispherical Reflectance)

$$\rho_{TOA}(\tau_{O3},\tau_R,\theta_s,\theta_v,\varphi_{s-v}) = T_{O3}(\tau_{O3},\theta_s,\theta_v) \left(\rho_R(\tau_R,\theta_s,\theta_v,\varphi_{s-v}) + \frac{T_{R\downarrow}(\tau_R,\theta_s)\rho_s T_{R\uparrow}(\tau_R,\theta_v)}{1 - S_R(\tau_R)\rho_s} \right)$$

Bi-Hemispherical Reflectance

LUT-1 Size: $41 (Tau_R) = 41 (words)$

LUT-1 ~ 5

>LUTs depend on Tau_R, viewing and illumination angles

Elevation is no longer a variable for LUTs

Discretization levels of each variable

- Solar-zenith angle: 9 levels (in cosine)

0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.998

View-zenith angle: 6 levels (in cosine)
0.98156, 0.90412, 0.76990, 0.58732, 0.36783, 0.12523
Diff. of solar-view azimuth: 13 levels (in degree)
0.0 ~ 180 at every 15 degree (for LUT due to symmetry)
Tau_R: 41 grids from 0.001 ~ 0.450 (log normal)

Application of LTSK-1 Algorithm on EO-1 Hyperion Data Processing

- ➤ 30 m pixel size
- ≻ 242 channels, 10 nm resolution, 10nm interval
- Comparison with Airborne Radiometric Data by ASD FieldSpec (512 channels, 3.5nm spectral resolution, 1.5nm interval
- Brasilia National Park: An LBA Core Site (Cerrado Region)

Brasilia National Park

False color composite of ETM+ (4,3,2) synthesized by Hyperion data

Open grassland 15.66S, 48.03W

Open grassland with sparse shrubs

15.59S, 48.01W

Shrubland with sparse trees 15.61S, 48.03W

Pasture

Gallery Forrest

Brasilia National Park Airborne Spectrorradiometric Data Collection

Rayleigh Scattering, Ozone & Water-Vapor Absorption Correction by GLI LTSK-1 Algorithm

Rayleigh: Elevation was determined from GTOPO-30, which is used to estimate the atmospheric pressure, which is then used to compute the optical depth. Path radiance and transmittances were obtained by a one-dimensional two-angle radiative transfer code (Discrete-Ordinates Method).

Ozone: Daily Ozone Data from Earth Probe was used to obtain the two-way transmittances.

Water-Vapor: ATREM's approach was chosen with Hitran96 data base for absorption coefficients.

11/14/2001

Hyperion after Rayleigh, Ozone&water-vapor correction

On-Going and Future Work

On-Going Work

- Algorithm Testing with MODIS L1B Data (as well as other sensors)
 - Code modification is necessary
- Investigation of Continuity/Compatibility of GLI-VI
 Products against Other Sensors (Yamamoto)

Future Work

- > QA Flags
- > QC Strategy
- > Algorithm Validation against Ground Data