

Iterative atmospheric correction algorithm for turbid case 2 Asian waters

Mitsuhiro Toratani, Akihiko Tanaka and Hajime Fukushima (Tokai University)

New atmospheric correction

Based on Siegel's approach (Siegel et al., 2000)

Iterative atmospheric correction

- To avoid black pixel assumption
- Siegel's approach hardly causes negative Lw in Case 1 water.
- But it isn't applicable in Case 2 water, because suspended matter isn't considered.
- We are making a new atmospheric correction algorithm to apply to case 2 water.

New approach for Case 2 water

- Estimation of water-leaving reflectance at near infrared band
 - Previous : It was assumed zero.
 - Siegel : function of chlorophyll-a concentration
 - This study: function of chlorophyll-a(chl), inorganic suspended matter(SS) and yellow substance(CDOM)
- Estimation of Chl, SS and CDOM
 - We use neural network in-water algorithm. (Tanaka et al., 1998)

Neural network algorithm

In-water model(1)

water-leaving reflectance at near infrared bands

$$[\rho_W(\lambda)]_N = \pi \cdot R_{rs}(\lambda)$$

 $\begin{array}{l} [\rho_w]_N & : normalized water-leaving reflectance \\ R_{rs} & : remote sensing refrectance \end{array}$

 $R_{rs}(\lambda) = 0.533R(\lambda)/Q \qquad Q=4.5$

R : reflectance just below surface (Lee et al., 1994)

In-Water model(2)

$$R(\lambda) = \frac{1}{3} \frac{b_b(\lambda)}{a(\lambda) + b_b(\lambda)}$$

a : absorption coefficien

- : absorption coefficient
- : backward scattering coefficient $b_{\rm b}$

$$a(\lambda) = a_w(\lambda) + a_c(\lambda, chl) + a_s(\lambda, SS) + a_y(\lambda, a_y(440))$$
$$b_b(\lambda) = b_{bw}(\lambda) + b_{bc}(\lambda, chl) + b_{bs}(\lambda, SS) + b_{by}(\lambda, a_y(440))$$

w: water, c: chlorophyll-a, s : inorganic suspended matter, y : yellow substance(CDOM)

Equations and References

coefficients	equations	references
a _w	a _w (765)=2.7722, a _w (865)=5.1014	Pope and Fry(1997)
a _c	a _c (765)=0, a _c (865)=0	Kishino(personal comm.)
a _y	$a_{y}(\lambda) = a_{y}(440) \cdot \exp\{-0.014 \cdot (\lambda - 440)\}$	Bricaud et al.(1981)
b _{bw}	$b_{bw}(765) = 0.000229$, $b_{bw}(865) = 0.000135$	Smith and Baker(1981)
b _{bc}	$b_{bc}(\lambda) = 0.0087 \times b_{c}(\lambda)$ $b_{c}(\lambda) = 0.27 \times chl^{0.698} \left(\frac{550}{\lambda}\right)^{-0.2983}$	Takahashi et al.(2000) Kishino(1988)
b _{bs}	$b_{bs}(\lambda) = b_s(\lambda) \cdot 0.01478$ $b_s(\lambda) = 0.125 \cdot SS \cdot \left(\frac{\lambda}{550}\right)^{-0.812}$	Babin and Doerffer (1996), Kronfeld (1988)

Neural network algorithm

Chlorophyll a

Neural Network

 This algorithm has good performance under
3mg/m³ although data are almost case 1 water.

Problem of this algorithm

Negative water-leaving reflectance
Neural network algorithm doesn't work well.
Why is negative reflectance caused?

- in-water model is insufficient?
 - Are coefficients different in turbid case 2 water?
 - We need to consider bi-directional effect?
- Absorptive aerosol
 - Asian dust has absorption at short visible band
 - For example

Absorptive aerosol

For less water-leaving reflectance

If water-leaving reflectances at visible bands were less than minimum waterleaving reflectance, the value is replaced the minimum values temporary.

Application to OCTS data

OCTS data over East China Sea

15 scenes

1997/2/19, 1997/5/9, 1997/5/31...etc

Comparison with Siegel's approach

Siegel's approach

This study

Chlorophyll-a concentration

Satellite(1997/5/31) $0.5-3.0 \text{ mg/m}^3$ (Yellow Sea) $2-5 \text{mg/m}^3$ (mouth of Chengjieng Tang et al(1998)0.5-1.7mg/m3 (Yellow Sea) $2.0-4.6 \text{mg/m}^3$ (mouth of the river)

Comparison with match-up data

Inorganic suspended matter

10.00 -1.00 0.10 0.01

Satellite(1997/5/31) 1.5-6g/m³ (mouth of Chengjieng) Matsuike et al.(1983) 0.7~3.1g/m³ Sep. in 1981

Problem: High SS is caused around cloud because of contamination of multiscattered light from cloud.

Absorption coefficient of CDOM at 440nm

Satellite(1997/5/31) 0.7-0.2m⁻¹ (mouth of Chengjieng)

Matsuike et al.1983 Ay(440)=0.5-3 m⁻¹ Sep. in 1981

Conclusion

This scheme simultaneously estimates Chlorophyll-a concentration inorganic suspended matter concentration absorption coefficient of yellow substance at 440nm.

- We evaluated the applicability of the iterative atmospheric correction procedure.
 - The range of satellite-derived these values approximately coincides with the ship measurement although the in-situ data was not synchronized with the satellite data.
- Number of iterations is typically three to four iterations, not so many overheads.

Conclusion (cont.)

- This scheme has better performance than Siegel's approach in Case 2 water.
- We need to improve in-water model.
 - Coefficients
 - Bi-directional effect
- We need to consider absorptive aerosol, as such as Asian dust.
- The contemporaneous in-situ measurements are importance for further algorithm development and validation.