#### Theme

#### **Retrieval of Cloud Geometrical Parameters and Water Vapor for GLI**

Makoto Kuji (Nara Women's University), Akihiro Uchiyama (Meteorological Research Institute) and Teruyuki Nakajima (University of Tokyo)



- Retrieval of Cloud Geometrical Parameters;
  This talk;
- 2. Retrieval of Water Vapor Amount;
  - Using GLI NIR Channels;
  - Tomorrow's Poster Session;



#### **Retrieval of Cloud Geometrical Parameters Using Remote Sensing Data**

Makoto Kuji (Nara Women's University) and Teruyuki Nakajima (University of Tokyo)

# <u>Outline</u>

- 4-channel Method:
  - Visible, Oxygen A-band, NIR, and TIR;
- Retrieval of Cloud Geometrical

Parameters ( $\tau_c$ , re, zt, and  $\Delta z$ );

- Low-Level Marine Clouds (Summer St.);
- MCR / ER-2 (Airborne; FIRE);
- Algorithm Development and Validation;

#### AVHRR image (FIRE)



# (NOAA-10, NASA/GSFC)

#### MCR image (FIRE)

~150 km)

Flight Line (ER-2;



# (NASA/GSFC)







Lookup Table (1): Retrieval ( $\tau_c$  and  $r_e$ )



#### Lookup Table (2): Geometric Sensitivity Chart ( $Z_t$ and $\Delta Z$ )



## RetrievalFbw



(\*) Nakajima and King (1990)

#### Retrieved Results ( $\tau_c$ , $r_e$ and LWP)



#### Retrieved Results (LWC, $N_c$ and $\sigma_e$ )



#### Retrieved Results ( $Z_t$ , $\Delta Z$ and $Z_b$ )



#### Retrieved Results ( $Z_t$ and $Z_b$ )



#### LIDAR Observation (for Validation of $Z_t$ and $Z_b$ )



#### LIDAR Observation (Z<sub>t</sub> and Z<sub>b</sub>; Lower Layer)



Validation ( $Z_t$  and  $Z_b$ )

#### MCR / ER-2 (Four-channel method)



LIDAR / ER-2

#### Validation ( $Z_t$ and $Z_b$ )

#### MCR / ER-2 (Four-channel method)



# Summary

- Four-channel method was applied to the airborne remote sensing data (MCR):
  - Good consistent with in situ observation;
- Validation with the airborne LIDAR for both top and bottom heights:
  - Dispersion and deviation are rather large

for both top and **bottom** heights;

- Multilayer system affects the results;

# **Future Works**

- Refinement of the algorithm
  - Surface (Boundary) Conditions, such as reflectance, pressure, and temperature;
  - Consideration of photon escape effect;
- Multilayer issue
  - Cirrus detection (1.38  $\mu$ m or 10.8  $\mu$ m);
  - Multiple stratification of cloud layer, or an incorporated (gross) approach,
  - Using TOVS, MODIS, or GLI;

# Logic of Algorithm

- Visible=  $f(\tau_c, r_e(z_t, \Delta z));$ • NIR=  $f(\tau_c, r_e(z_t, \Delta z));$
- TIR = f ( $\tau_c$ , re, zt, and  $\Lambda z$ ); 2nd
  - Oxygen A-band =  $f(\tau_c, r_e, z_t, and \Lambda z)$ ; step

#### Theme

#### Retrieval of Precipitable Water in a Global Scale using Near Infrared Data

Makoto Kuji (Nara Women's University) Akihiro Uchiyama (Meteorological Research Institute)

# **Objectives**

- Applications to ADEOS-II / GLI (Nov., 2002);
- Water Vapor: Column (Precipitable Water);
- Utility: Atmospheric Correction or Product;
- Advantage: Fully Synchronized Data Set;
- Scale: Pixel-by-Pixel (about 1 km<sup>2</sup>);
- Status: Algorithm Refinement (from MODIS);

# Approach

- Radiance Ratio between:
  - Water Vapor Absorbing Band and;
  - Non-Absorbing Band over NIR;
  - Related to Precipitable Water;
- GLI Application:
  - $R_{1135}/R_{1240}$  or  $R_{1135}/R_{1050}$ ;
  - Nonlinear Regression Curve Fitting;
  - Calibration Curve to Retrieve Precipitable Water;

#### Transmittance (Water Vapor)



#### Transmittance (Water Vapor)



# Simulation for Feasibility (1/2)

• Radiance Ratio:

-  $R_{1135}/R_{1240}$  and  $R_{1135}/R_{1050}$  using GSS;

- Target (Background):
  - Bright (50%) and Dark (a few %) Reflectivity:
    - Land: Lambertian (for simplicity);
    - Ocean: Non-Lambertian  $(u_{10} = 5 \text{ m s}^{-1});$
- Aerosol Loading:
  - $\tau_{a,500}$ : 0.0, 0.1 and 1.0 (Rural and Oceanic Models);

# Simulation for Feasibility (2/2)

- Scan Geometry:
  - Nadir:  $\theta_0 = 40^\circ$  and  $\theta = 0^\circ$ ;
  - Off-Nadir:  $\theta_0 = 60^\circ$ ,  $\theta = 60^\circ$  and  $\Delta \phi = 90^\circ$ ;
- Calibration Curve:

$$-\frac{R_{wv}}{R_{nwv}} = a + b \exp\left(-c\sqrt{W}\right) \quad \text{or} = a^* + b^* \exp\left(-c^*\sqrt{W^*}\right) ;$$

• Scaled Water Vapor Path (W\*):

$$-W^* = W \left( \frac{1}{\cos \theta} + \frac{1}{\cos \theta_0} \right) ;$$

#### Calibration (Bright Target; Lambertian)



#### Calibration (Bright Target; Water Vapor Path)



Water Vapor Path (mm)



Water Vapor Path (mm)



#### Calibration (Dark Target; Water Vapor Path)



#### Calibration (Dark Target; Aerosol Loading)



Water Vapor Path (mm)

# Summary

- Precipitable Water Retrieval using NIR Channels;
- Radiance Ratio Approach was Examined;
- Feasibility Study using GSS:
  - Both  $R_{1135}/R_{1240}$  and  $R_{1135}/R_{1050}$  are available;
  - Bright and Dark Target: up to 10 mm in PW;
  - Bright Target (Rural Aerosol): up to 6 mm;
  - Dark Target (Oceanic Aerosol): up to 8 mm;

# **Future Works**

- Application (Lookup Table)
  - Land and Cryosphere:

Surface Condition (BRDF from L. or C. Gs.);

- Combined Method (similar to MODIS)
  - $-2*R_{1135}/(R_{1240}+R_{1050});$
  - Take Surface Variability Properly;

# **Objectives**

- Applications to ADEOS-II / GLI (Feb., 2002);
- Water Vapor: Column (Precipitable Water);
- Utility: Atmospheric Correction or Product;
- Advantage: Fully Synchronized Data Set;
- Status: Algorithm Refinement (from MODIS);
  - NIR Channels (GLI: 1135 and 1240 or 1050 nm);
  - Scale: Pixel-by-pixel (about 1 km<sup>2</sup>);
  - Radiance Ratio between WV and Window;

# **Objectives**

- ADEOS-II / GLI;
- Water vapor: Column or Profile;
- Utility: Atmospheric Correction or Product;
- Scale: Segment or Pixel-by-pixel;
- Advantage: Fully Synchronized Data Set;
- Possibility:
  - NIR (1135 nm) over Bright Targets;
  - WV (6.7, 7.3, 7.5, and 8.6  $\mu m)$  for Vertical Structure;

### Summary (Water Vapor)

W1. Precipitable Water Retrieval

- 1135 / 1050 nm channel: available (Pixel-by-pixel);

- Land: Promising (0-10 g cm<sup>-2</sup> in WVP);

- Ocean: Promising (0-5 g cm<sup>-2</sup> in WVP);

- Analysis and Validation;

- AMSS does not have 1135 nm channel...;

- W2. Correction for Ocean Color Algorithm
  - Split-Window Channels (VISSR);
    - Barton and Prata (1999) also suggested the inconsistency;

# Future Works (Water Vapor)

W1. Precipitable Water Retrieval

- Lookup Table;
  - Land: Scan Geometry (BRDF from Land G.);
  - Ocean: Aerosol Loading (over Dark Target);

#### W2. Correction for Ocean Color Algorithm

- Split-Window (AMSS, VISSR and AVHRR);
  - Comparison between Ratio and Difference ( $\Delta$ T) Methods;
- WV Channels (AMSS, VISSR and TOVS);
  - Utility of 6.7, 7.3, and 8.3  $\mu m$  channels;

#### **Single Scattering Approximation**



Surface