

A New Advanced Discrete Model (NADIM) of radiation transfer to simulate GLI measurements

Michel M. Verstraete, Nadine Gobron and Bernard Pinty

Space Applications Institute EC Joint Research Centre, TP 440 I-21020 Ispra (VA), Italy

E-mail: Michel.Verstraete@jrc.it

- Introduction to the issues
- Model philosophy and fundamental equations
- Model set-up
- Model evaluation
- Applications

Introduction to the issues (1)

- - $\mathbf{\Psi}$ as a function of surface and atmospheric properties
- A panoply of such models exist, for a variety of purposes and with differing performances, requirements and costs
- In the solar domain, models account for the (scalar) radiation intensity only, not the (vector) Stokes parameters
- Such models

↓ assume the "far field approximation" or independence of scatterers

• These models, originally developed by astrophysicists, have been used extensively by atmospheric scientists

Introduction to the issues (2)

- Vegetation canopies are significantly and specifically different from turbid media:
 - \checkmark leaf size >> λ
 - medium is dense and compact, far field approximation is not verified
 discrete number of finite size scatterers: spatial gradients undefined
- External boundary conditions are poorly known

 I direct + diffuse downward radiation from sky
 - **↓** upward reflectance from soil below the canopy
- For the purpose of the GLI simulator, this model must
 - adequately represent the spectral and directional properties of the solar radiation field reflected by typical terrestrial environments
 - $\mathbf{\Psi}$ be computationally economical

Model philosophy and characteristics

- - **↓** as a 1-dimensional model for fast computations
- This model features
 - ↓ an explicit representation of canopy architecture for the first two orders of scattering, including the hot spot
 - the Discrete Ordinate Method (DOM) to represent higher-order multiple scattering effects

3-D representation of a homogeneous scene

Space Applications Institute Global Vegetation Monitoring Unit

Input models parameters

- Vegetation architecture is specified through any three of the following 4 parameters:

 - ↓ Equivalent leaf diameter
 - **↓**Number of leaves per unit volume
 - ↓ Leaf Area Index
- Characteristics of plant leaves:
 - ✓ reflectance and transmittance of leaves
 - **↓** leaf angle distribution
- Optical properties of the underlying ground:
 - ↓ Albedo (if Lambertian), or
 - Single scattering albedo, asymmetry factor, and hot spot parameter (if non-Lambertian)

Input data sources

- Leaf optical properties:
 - ↓LOPEX (1995) database available at JRC
 - ↓ Simulations with the PROSPECT model of Jacquemoud et al.
- Leaf orientation distributions:
 - ✓ See the RAMI pages on http://www.enamors.org/
- Soil optical properties:

 ♦ Price (1995) database

 ♥ Bowker (1985) database
- Incoming (downward) radiation field:
 - **↓** Use models such as 6S or field measurements

Model output and validation procedure

- Primary output is the spectral bidirectional reflectance factor, derived output includes albedo and fraction of absorbed radiation
- Comparison with RAYTRAN
- Validation in inverse mode
- Evaluation within the RAMI Phase 1 exercise (See the web page)

RAdiation transfer Model Intercomparison (RAMI)

- The aim was not to validate BRF models but to assess the degree of coherence between them
 - Criterion: construct a measure of distance between BRF fields generated under identical geophysical and geometrical conditions
- The metrics were computed as sums of relative differences between pairs of reflectances, where the sum is taken over some or all models, wavelengths, scenes, and illumination zenith angles
- Both 1-D and 3-D models participated
- Reference: Pinty, B. et al. (2000) 'The RAdiation transfer Model Intercomparison (RAMI) Exercise', *Journal of Geophysical Research*, in print.

Local model deviations (homogeneous)

iahi

roSail

Local model deviations (heterogeneous)

Space Applications Institute Global Vegetation Monitoring Unit

Sprint

Flight Raytran RGM ProSail ProKuusk Discret

JOINT RESEARCH CENTRE

EUROPEAN COMMISSION

Overall model comparison and discernability

Space Applications Institute Global Vegetation Monitoring Unit

Conclusions

- The New Advanced Discrete Model (NADIM) is an efficient and accurate model to describe the spectral bidirectional reflectance of horizontally homogeneous areas
- NADIM has been extensively evaluated and delivers reflectances essentially indiscernible from 3-D ray tracing models for homogeneous scenes
- The FORTRAN software code for NADIM is publicly available from the ENAMORS Web site at http://www.enamors.org/
- NADIM has been used in a variety of contexts, including to simulate GLI data and to prepare the GLI VI

