Land channels Specification (VNIR, SWIR, MTIR)											
ch	Wave length [nm]	Dynamic range [Wim2istrim m]	SNR (input L)	ch	Wave length [nm]	Dynamic range [Wim2istri im m]	SNR (input L)	ch	Wave length [nm]	Dynamic range [W/m2/str/m m]	SNR (input L)
VNIR (1km) (#p	: piecewise line	ar band)		15	710.1	233 (369)	300 (10)		250 m	bands	
1	380.7	683	467 (59)	16	749	11 (17)	991 (7)	20	462.4	691	241 (36)
2	399.6	162	1286 (70)	17	762	246 (473)	293 (6)	21	542.1	585	141 (25)
3	412.3	130	1402 (65)	18	866.1	8 (13)	1309 (5)	22	661.3	115 (156)	255 (14)
4p	442.5	110 <i>/</i> 680	893 (54)	19	865.7	211 (339)	386 (5)	23	824.1	210 (287)	218 (21)
5p	459.3	124 /769	880 (54)		SWIR	.(1 km)		28	1644.9	76	298 (5)
6	489.5	64	1212 (43)	24	1048.6	227	381 (8)	29	2193.8	32	160 (1.3)
7p	519.2	92 /569	627 (31)	25	1136.6	184	412 (8)	MTIR (Kelvin, NE∆T at 300K))K)
8p	544	96 /596	611 (28)	26	1241	208	303 (5.4)	30	3721.1	345 K	0.07 K
9	564.8	39	1301 (23)	27	1380.6	153 d trom "Lanaka	192 (1.5)	31	6737.5	307 K	0.03 @285K
10	624.7	28* 1 (39* 2)	1370 (17)	Data Evaluation Test results, NASDA ADEOS-II Project, ADEOS-II/GLI Workshop, November 14-16, 2001, Tokyo, Japan".				32	7332.6	322 K	0.03 K
11	666.7	22 (31)	1342 (13)	 Center wavelength is derived from GLI spectral response. 				33	7511.4	324 K	0.02 K
12	679.9	23 (33)	1293 (12)	•SAN tests are in ambient (VN+SW) and high temp (MT) condition.				34	8626.3	350 K	0.05 K
13	678.6	342 (522)	235 (12)	•*1 Maximum radiance for linear response (VN2)				35	10768	354 K	0.05 K
14	710.5	16 (24)	1404 (10)	•*2 Predicted maximum radiance for DN=4095 (12bit) or saturation.			36	12001.3	358 K	0.06 K	
									NASDA (HI CAL Group	, May 1, 2002
											:1km Land
											Channel
											:250m
											Land
											Channel

RSR of 1km land channels RSR of 250m land channels With typical spectral reflectance With typical spectral reflectance

7 VNIR land channels3 SWIR land channels5 MTIR land channels

4 VNIR land channels 2 SWIR land channels

These channels are quite similar to Landsat/TM

GLI 1km land algorithm on higher processing and products

1. GLI 1km Precise Geometric Correction

L2A_LC

1. Maximum NDVI can detect cloud free pixels

- 2. Maximum NDVI can also detect higher satellite zenith angle pixels, which is effected by surface BRDF.
- 3. Selected pixel should be satisfied with both of lower satellite zenith angle and maximum NDVL
 - **TOA reflectance CVMVC** (constraint view angle maximum value Composite)

16day composite Days: 1 to 16

$$\rho_{obs} = \frac{\pi L_{sat}}{F_0 \cos(\theta_s)}$$

3. GLI 1km Atmospheric Correction (remove Ozone Absorption, Rayleigh Scattering)

Ozone Absorption

ACLC

Solution 1. L2A_LC

leaves the STSG (Sun-Target-Sensor Geometry) data.

This algorithm will be applied after CAL/VAL phase (Dec., 2003).

GTOPO30

NOAA

TOVS

Atmospheric corrected reflectance can be applied after composite.

Solution 2. Optical depth of molecular scattering and STSG conditions can be expressed by LUT (Look-Up table) using standard atmospheric model and elevation (depends on temperature and pressure).

Much of the computation during

atmospheric correction requires intensive

CPU time due to floating point processing.

-> "continuity index" This index could be extended to provide a longer term data for use in operational monitoring studies.

Enhanced Vegetation Index (EVI):

-> "optimized index" This index can enhance the vegetation signal with improved sensitivity in high biomass regions and improved vegetation monitoring through a decoupling of the canopy background signal and a reduction in atmospheric effects

GLI 250m land higher algorithm (Ongoing)

The example of applying 1km ozone & rayleigh correction algorithm to 250m data

Before RGB= (Ch.22,21,20)

After RGB= (Ch.22,21,20)

These images are captured on May 3, 2003. And these are RGB radiance images with linear stretch equally to each channels.

1km and 250m RSR with gaseous transmittance

1km red and NIR RSR with gaseous transmittance

250m red and NIR RSR with gaseous transmittance

1000

Red and NIR 250m channels have SENSITIVITY OF ATMOSPHERIC COMPENSATION (Water Vapour etc.) The characteristics of GLI 1km NDVI and GLI 250m NDVI may be different.

Radiance and reflectance will be evaluated using other sensors and validation data.

GLI Land Validation Site

sensibility of vegetation physical parameters for GLI higher products

Spectral Reflectance Data

Spectral reflectance data of Various Objects on the ground

	Mandalgovi	Brazilia National	
Site	(Mongolia)	Park (Brazil)	Konza (U.S.)
	1998/08/09		
Date	\sim 1998/08/11	2000/05/05	2000/06/15
organization	Chiba Univ.	Uinv. Of Arizona	Uinv. Of Arizona
	S2320 (Soma		
Spectrometer	Optics Inc.)	FieldSpec HH	FieldSpec HH
Range	350nm-1050nm	269.2nm-1068nm	269.2nm-1068nm
Number of Channels	512ch	512ch	512ch
	Mobile	MQUAL	
	Measurement	(MODLAND Quick	
Method	System	Airborne Looks)	"Yoke"
Sensor Height	about 2m	about 200m	about 2m

0.5

Example of simulation results

GLI 1km NDVI

0.05 0.00 -0.05 90.10 90.15 0.15 0.20 Atmospheric effect -0.25 -0.30 Rayl. Rayl.+Ozone Rayl.+Ozone+Water -0.35 0.00 0.40 0.60 0.20 0.80 1.00 NDVI

No atmospheric corrected

GLI 250m NDVI

These results derived from 6S RTM and spectral reflectance data obtained by Chiba Univ. and UoA field experiment data.

Item	Condition
Date	23, June
Solar Zenith Angle	45[deg]
Satellite Zenith Angle	45[deg]
Relative Azimuth Angle	20[deg]
Target Height	0[m]
Aerosol	None
Water Vapor	2.93[g/cm2]
Ozon	0.333[cm-atm]
Ground Condition	Lambertian