現場データによる代替校正

2003.04.21 RESTEC吉田

<低輝度ターゲット> MOBYデータによる代替校正

<高輝度ターゲット> Railroad Valleyの地上観測データによる代替校正

MOBYデータによる代替校正 <手法>

MOBYデータによる代替校正 くデータ>

GLI

期間: 2003年2月~9月 対象データ数: 13日間(手法1),8日間(手法2) QC: 雲およびサングリントの影響を受けていないデータ

□ 正規化海水射出輝度

ハワイ沖のMOBYブイデータによる観測

ロ補助データ

オゾン量:	TOVS
海面気圧:	JMA客観解析データ

ロエアロソル光学特性(手法2のみ)

エアロソル光学的厚さ、サイズ分布、屈折率: Lanaiでのスカイラジオメータ観測からリトリーブ(AERONETにて公開)

MOBYデータによる代替校正 <結果>

MOBYデータによる代替校正 <結果> (手法2の結果に関する調査)

<エアロソル特性の空間分布>

<SeaWiFSとの比較>

GLIとSeaWiFSから推定される光学的厚さの比較

	taua865_	tau865_	tau865_
Date	SeaWiFS	GLI	AERONET
030207	0.0429	0.0875	0.0494
030408	0.0306	0.0433	0.0356
030919	0.0553	0.0598	0.0524
030922	0.0538	0.0839	0.0530
030929	0.0301	0.0543	0.0288

MOBYサイトでの結果からは、 GLIの観測輝度が高い可能性

MOBYデータによる代替校正 <結果> (手法2の結果に関する調査)

しかし、

•SeaWiFSとGLIのエアロソル光学的厚さの全球での比較では、

ここまでの違いを確認できない。

•GLIとマッチアップデータのエアロソル光学的厚さの比較は、

マッチアップサイトにより結果にバラツキがある。

•現時点の迷光等の解析からは、15%の違いを説明できる要因は考えにくい。

•ch1,2では、観測された輝度は時間、入射角依存性を持っている。 •この傾向は、全球データの結果と整合している。

Railroad Valleyデータによる代替校正<手法>

[Over Land]

Railroad Valleyデータによる代替校正<データ>

□ 地表面反射率

ロエアロソル光学的厚さ

ロオゾン量,水蒸気量

Railroad Valleyデータによる代替校正<結果>

・代替校正係数は、観測日により 5-10%異なる
 ・アリゾナ大学とRSTAR5bによる結果は、チャンネル 1,4,13
 で比較的大きい(約3-5%)

使用している太陽照度の違い

まとめ

く低輝度ターゲット>

(ch13,19に相対的な代替校正)

- ・代替校正係数は、全球データの結果とほぼ一致している。
- ・走査鏡入射角依存性とその時間変動についても、全球データの結果と整合している。
 (絶対的な代替校正)
- ・観測日に対する代替校正係数の分散が大きい
- ・近赤外チャンネルでGLIの輝度は、高い可能性があるが、今後更なる調査が必要である。 <高輝度ターゲット>

・観測日に対する代替校正係数の分散が大きい。

<比較>

・低輝度と高輝度の代替校正係数は、違う可能性があるが、今後更なる調査が必要である。 Vicarious Calibration Coefficient

