Status of AMSR2 Level-2 Products (Algorithm Ver. 1.00)

Earth Observation Research Center
Japan Aerospace Exploration Agency
and
GCOM-W1 Algorithm Development PI

July 9, 2013
Current Status and Schedule

- 2012.05.18 GCOM-W1 (SHIZUKU) launched
- 2012.07.03 Started AMSR2 observation from A-Train orbit
- 2012.07.04 Released AMSR2 observation images
- 2012.08.10 Initial functional verification completed
- 2012.09.03- Preliminary L1 products to PI and collaborating agencies
- 2012.10.19 Preliminary L2 products to PI and collaborating agencies
 SST, SSW, TPW, CLW, SIC
- 2012.11.07 Preliminary L2 and L1R products to PI and collaborating agencies
 PRC, SMC, SND, SST (revision), SSW (revision)
- 2013.01.25 Public release of L1 products
- 2013.05.17 Public release of L2 products

* GCOM-W1 project reviewed prior to the public data release, based on the predetermined success criteria (i.e., accuracy of products).
Sea Surface Temperature (SST)
Sea Surface Temperature (SST)

• **Algorithm PI**
 – Akira Shibata, Meteorological Satellite Center, Japan Meteorological Agency

• **Product status**
 – SST algorithm Ver. 1.00, using L1B brightness temperatures Ver. 1.10 released on 1 March 2013 as inputs.

• **Caveats**
 – Potential errors in brightness temperatures should be corrected to estimate accurate SST. Currently, the correction is performed on monthly basis: last month’s correction table is used for correcting the present month’s brightness temperatures. This “non-realtime” correction may sometimes degrade the SST accuracy. After we will get one year observation of AMSR2 in July 2013, correction method will be re-considered.
 – Simple spatial filter (3x7 (scan x line) running mean) is applied to remove noise. After applying this filter horizontal resolution is almost same as AMSR2 FOV of 6GHz channel.
 – Currently, SST is retrieved based on the 6.925 GHz channels. Comparable SST can be retrieved by using the newly added 7.3 GHz channels. After the 1-year stability and quality monitoring of 7.3 GHz channels, utilization of both frequency channels will be considered.

• **Validation results**
 – Validation period: from 6 July 2012 to 31 March 2013.
 – Match-up condition: Select buoy SST derived from GTS within 2-hr in time and 30km in distance, 10-points average of AMSR2 SST (excluding those have differences larger than 3°C from corresponding buoy measurement based on AMSR-E experience).
 – Resulted errors: rms error *0.6°C*, bias -0.092 (see next page for detail)

• **References**
Sea Surface Temperature (SST)

Comparison with buoy SST
Ascending + Descending

Validation Required (Release)
0.6 °C
0.8 °C (RMSE)

Time series of bias, RMSE and observation number
(Ascending + Descending)

Validation period:
6 July 2012 to 31 March 2013
Sea Surface Wind Speed (SSW)
Sea Surface Wind Speed (SSW)

- **Algorithm PI**
 - Akira Shibata, Meteorological Satellite Center, Japan Meteorological Agency

- **Product status**
 - SSW algorithm Ver. 1.00, using L1B brightness temperatures Ver. 1.10 released on 1 March 2013 as inputs.

- **Caveats**
 - Corrections were applied to AMSR2 brightness temperatures based on the statistical comparison with 9.5-years AMSR-E brightness temperatures.
 - Potential errors in brightness temperatures should be corrected to estimate accurate SSW. Currently, the correction is performed on monthly basis: last month’s correction table is used for correcting the present month’s brightness temperatures. This “non-realtime” correction may sometimes degrade the SSW accuracy. After we get one year observation of AMSR2 in July 2013, correction method will be re-considered.

- **Validation results**
 - Match-up condition: Select buoy SSW derived from GTS within 2h in time and 30km in distance, 10-points average of AMSR2 SSW (excluding those have differences larger than 3 m/s from corresponding buoy measurement).
 - Resulted errors: rms error 1.11 m/s, bias 0.14 m/s (see next page for detail)

- **References**
Sea Surface Wind Speed (SSW)

Comparison with buoy SSW
Ascending + Descending

Validation Required (Release)
1.1 m/s 1.5 m/s (RMSE)

Validation period:
6 July 2012 to 31 March 2013

Time series of bias, RMSE and observation number
(Ascending + Descending)

Validation period:
6 July 2012 to 31 March 2013
Total Precipitable Water (TPW)
Total Precipitable Water (TPW)

- **Algorithm PI**
 - Masahiro Kazumori, Numerical Prediction Division, Japan Meteorological Agency

- **Product status**
 - TPW algorithm Ver. 1.00, using L1R brightness temperatures Ver. 1.10 released on 1 March 2013 as inputs.

- **Caveats**
 - TPW are retrieved based on 18GHz, 23GHz and 37GHz channels' brightness temperature. TPW are sometimes not retrieved in descending orbit near coastal area of Continental United States. In this situation, observed AMSR2 brightness temperatures exceed a threshold of normal observed value in the algorithm. One possible cause is RFI contamination for 18GHz descending brightness temperature. Currently, the data are flagged as “invalid retrieval”. The cause is under investigation.

- **Validation results**
 - **Validation period**
 - GPS: July 24, 2012 – December 30, 2012
 - Selected sites: bamf barh bjco brmu cnmr coco cro1 dgav falk geno guug hers hert hlfx lmmf mac1 mars onsa palm qa1 r2o tthi uclu
 - **Match-up condition**
 - RAOB: Distance less than 30km, Time difference within 6 hours
 - GPS: Distance less than 30km, Time difference within 3 minutes
 - **Resulted errors**:
 - rms error 2.9 kg/m², bias 0.09 kg/m², based on RAOB results (see next page for detail)

- **References**
Total Precipitable Water (TPW)

Ascending passes

Descending passes

K0008000 AMSR2(kaz) - SONDE TPW Bias & STD Ascending(G) (20120724 - 20130331)

K0008000 AMSR2(kaz) - SONDE TPW Bias & STD Descending(G) (20120724 - 20130331)
Total Precipitable Water (TPW)

Comparison with Radiosonde Ascending + Descending

Comparison with GPS Ascending + Descending

Validation Required (Release)

<table>
<thead>
<tr>
<th>Validation</th>
<th>Required (Release)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.9 kg/m²</td>
<td>3.5 kg/m²</td>
</tr>
</tbody>
</table>

(RMSE)
Cloud Liquid Water (CLW)
Cloud Liquid Water (CLW)

- **Algorithm PI**
 - Masahiro Kazumori, Numerical Prediction Division, Japan Meteorological Agency

- **Product status**
 - CLW algorithm Ver. 1.00, using L1R brightness temperatures Ver. 1.10 released on 1 March 2013 as inputs.

- **Caveats**
 - Because directly measured CLW amount is not available at present, absolute value of retrieved CLW are not optimized. CLW are retrieved based on 18GHz, 23GHz, and 37GHz channels' brightness temperature. CLW are sometimes not retrieved in descending orbit near coastal area of Continental United States. In this situation, observed AMSR2 brightness temperatures exceed a threshold of normal observed value in the algorithm. One possible cause is RFI contamination for 18GHz descending brightness temperature. Currently, the data are flagged as “invalid retrieval”. The cause is under investigation.

- **Validation results**
 - Obtaining in-situ data of cloud liquid water is a difficult issue. Therefore, we evaluated CLW errors over clear sky areas identified by MODIS cloud flag information for the present validation. From the probability density functions (PDFs) of CLW over clear sky areas, biases and standard deviations were computed. Those errors were also evaluated for various environment conditions such as under different SST, sea surface wind speed, and total precipitable water observed by AMSR2.

 - Comparisons with ground-based microwave radiometer data are also ongoing over small island sites such as Nauru and Manus islands (maintained by US ARM program).

 - Validation period is from August 2012 to March 2013.

 - Resulted errors: 0.05 kg/m² (see next page for detail)

- **References**
Cloud Liquid Water (CLW)

AMSР2 CLW over clear sky areas (August 2012)

CLW PDF over clear sky areas (August 2012)

Validation Required (Release)

0.05 kg/m² 0.1 kg/m²

- As the linear sum of the worst cases of bias (~0.019) and standard deviation (~0.026) in the period from August 2012 to March 2013, total error is about 0.05 kg/m².

- However, as mentioned before, this is just the error around zero CLW values. Ground-based microwave observations will be used for further validation activities.

<table>
<thead>
<tr>
<th>Validation</th>
<th>Required (Release)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 kg/m²</td>
<td>0.1 kg/m²</td>
</tr>
</tbody>
</table>
Precipitation (PRC)
Precipitation (PRC)

• **Algorithm PI**
 – Kazumasa Aonashi, Meteorological Research Institute, Japan Meteorological Agency

• **Product status**
 – PRC algorithm Ver. 1.00, using L1B brightness temperatures Ver. 1.10 released on 1 March 2013 as inputs.

• **Caveats**
 – Biases depending on input L1B are corrected to TMI using parameters provided by JAXA.

• **Validation results**
 – Validation period: July 24, 2012 – March 31, 2013
 – Match-up condition: Select cross observation between AMSR2 and the TRMM Precipitation Radar (PR) within 10 minutes, averaged to about 50km (same as FOV of TMI 10 GHz (63.2x36.8 km))
 – Resulted errors (see next page for detail)
 • Ocean: relative error (RMSE/Mean(%)) **47%**, bias -0.02 mm/hr.
 • Land: relative error **91%**, bias 0.01 mm/hr.

• **References**
Precipitation (PRC)

Ocean

Bias (Ocean) = −0.02 (mm/h)
Correlation (Ocean) = 0.92
RMSE (Ocean) = 0.59 (mm/h)
N (Ocean) = 592,91

Land

Bias (Land) = 0.01 (mm/h)
Correlation (Land) = 0.70
RMSE (Land) = 0.93 (mm/h)
N (Land) = 251,77

RMS/Mean (%) At TMI 10GHz footprint (63.2x36.8 km)

<table>
<thead>
<tr>
<th></th>
<th>Validation</th>
<th>Required (Release)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ocean</td>
<td>47 %</td>
<td>50 %</td>
</tr>
<tr>
<td>Land</td>
<td>91 %</td>
<td>120%</td>
</tr>
</tbody>
</table>
Sea Ice Concentration (SIC)
Sea Ice Concentration (SIC)

- **Algorithm PI**
 - Josefino C. Comiso, NASA Goddard Space Flight Center
 - Kohei Cho, Tokai University

- **Caveats and Limitations**
 - In order to utilize sea ice parameters used for AMSR-E, AMSR2 L1R brightness temperature were converted to “AMSR-E equivalent” brightness temperature and ASMR-E sea ice concentration(SIC) algorithm is applied for estimating sea ice concentrations.
 - Some residual sea ice concentrations(false sea ice) remain in the areas of open water under excessive winds and/or stormy weather. False sea ice also appears along the coast due to the influence of land contamination. The PIs are working on optimizing filters to reduce these effects.
 - In summer, the SIC accuracy is reduced in regions where there is meltponding on the sea ice surface.
 - It should be noted that SIC less than 10% is not reliable since it is difficult to determine the difference in microwave emissivity between very low percentage sea ice covered areas and open water.

- **Validation results**
 - Verification of SIC were performed by comparing with simultaneously corrected Aqua/MODIS band2 (0.841 to 0.876μm, IFOV:250m) images. The MODIS images were collected under the cloudless conditions and were binarized to extract sea ice areas. The 250m ice grid cells were summed over each co-registered AMSR2 10km grid cell to provide a 10km resolution ice concentration.

 - OCT 31 2012 Southern Hemisphere 1: Bellingshausen - Amundsen Sea RMSE 9.3%
 - FEB 03 2013 Southern Hemisphere 2: Weddell Sea RMSE 4.13%
 - JUL 28 2012 Northern Hemisphere 1: Arctic - Greenland Sea RMSE 9.94%
 - MAR 01 2013 Northern Hemisphere 2: Greenland Sea RMSE 13.65%
 - NOV 30 2012 Northern Hemisphere 3: Bering Sea RMSE 9.75%
 - MAR 05 2013 Northern Hemisphere 4: Sea of Okhotsk RMSE 8.69%

 - RMSE was almost <10%. (Average: 9.21%). Within the ice pack in winter, the SIC is near 100% and the RMSE is closer to 5%. Also, note that the SIC derived from MODIS is not 100% accurate and hence the RMSE for AMSR2 is actually lower than quoted.

- **Reference**
Southern Hemisphere 1: Bellingshausen • Amundsen Sea

OCT 31 2012

IC (%)

RMSE 9.3%

AMSR2 - MODIS SIC (Antarctic)

correlation: 0.962
rmse: 9.34
bias: -5.409
Y = 1.00X - 5.77
plot number: 1847

RMSE 9.3%
Southern Hemisphere 2: Weddell Sea

AMSR2

MODIS

FEB 03 2013

RMSE 4.13%

\[y = 1.0199x - 1.0649 \]

\[R^2 = 0.9649 \]
Northern Hemisphere 1: Arctic - Greenland Sea

JUL 28 2012

IC (%)

RMSE 9.94%

AMSR2 - MODIS SIC (Arctic)

correlation: 0.921
rmse: 9.94
bias: -4.585
Y = 0.93X + 2.09
plot number: 1632

RMSE 9.94%
Northern Hemisphere 2: Greenland Sea

MAR 01 2013

RMSE 13.65%
Northern Hemisphere 3: Bering Sea

NOV 30 2012

IC (%)

AMS2 - MODIS SIC (Bering)

correlation: 0.970
rmse: 9.75
bias: -1.045
Y=0.96X + 1.43
plot number: 1167

RMSE 9.75%
Northern Hemisphere 4: Sea of Okhotsk

MAR 05 2013

IC (%)

RMSE = 8.69%

AMSR2 - MODIS SIC (Okhotsk)

correlation : 0.958
rmse : 8.69
bias : -1.390
Y=0.98X + 0.53
plot number : 1995

MAR 05 2013

RMSE = 8.69%
Soil Moisture Content (SMC)
Soil Moisture Content (SMC)

• **Algorithm PI**
 - Toshio Koike, The University of Tokyo

• **Product status**
 - SMC algorithm Ver. 1.00, using L1R brightness temperatures Ver. 1.10 released on 1 March 2013 as inputs. Slope/offset values were applied to L1R Tbs to compensate differences between AMSR2 and AMSR-E calibrations.
 - The algorithm is basically the same as that has been used for AMSR-E, except the update of fractional vegetation area dataset (normal value derived from MODIS NDVI during July 2002-June 2012).

• **Caveats**
 - SMC tends to be overestimated under the extreme dry condition such as over desert.
 - SMC around coastlines and large lakes often shows high value due to water surface effects.
 - Over densely vegetated areas such as Amazon forest and Afrotropical forest, SMC shows low value because the signal from soil surface is absorbed in the vegetation layer.
 - SMC also shows low value in heavy precipitation area and mountainous area.
 - RFI in 10.65 GHz channels may affect SMC values at many locations in Europe and Japan.
 - SMC values over the Greenland ice sheet is not valid but not masked in the current product.
Soil Moisture Content (SMC)

• Validation results
 – In-situ data over SMC validation sites (see next page) were used. To alleviate the nonuniformity issue of SMC in AMSR2 footprints, areas with several tens of kilometers on a side, monotonous geography, and good accessibility were selected and established as SMC validation sites. SMCs are measured at multiple points in each area. In addition, in-situ data from USDA/SCAN Little River site were used, although the SMC is point measurement.
 – In-situ data and AMSR2 estimates were compared under the conditions of within 7km in distance and 1 hour (2 hour for Mongolian site) in time. In-situ data measured at multiple points in a area are averaged before comparing with AMSR2 estimates, except for Little River data. SMC errors are basically evaluated by Mean Absolute Error (MAE) metric.
 – Due to the data collection timing and their calibration process, validation periods are different.
 • Mongol: July 2012 – September 2012
 • Australia: July 2012 – April 2013
 • Thailand: July 2012 – September 2012
 • Little River: July 2012 – January 2013
 – Resulted errors: 4 % in MAE (see next page for detail)

• Reference
SMC Validation Sites

- All sites were established and maintained by cooperation with domestic/international agencies and universities.
- Mongolian site has been used for AMSR/AMSR-E/ALOS validation for a long time. Sites in Thailand and Australia were established recently to increase conditions of SMC and surface/vegetation types.

Mongolian Plateau (Kaihotsu, 2000-)

Thailand (Kaihotsu and Mizoguchi, 2010-)

Australia (Walker, 2012-)

Little River (USDA SCAN)
Validation over Mongolian Plateau

Ascending passes

Descending passes

Ascending/Descending passes

In-situ soil moisture (%vol)

AMSR2 soil moisture (%vol)

Num. = 62
R = 0.443
RMSE = 5.219
Bias = 2.574
MAE = 3.939

Num. = 62
R = 0.670
RMSE = 4.028
Bias = 2.438
MAE = 3.213

Num. = 124
R = 0.547
RMSE = 4.662
Bias = 2.506
MAE = 3.576

Mongolia

In-situ
In-situ(ave.)
AMSR2(Asc)
AMSR2(Des)
Validation over Australia Yanco

Ascending passes

Australia Yanco (Asc.)

Descending passes

Australia Yanco (Des.)

Ascending/Descending passes

Australia Yanco (Des/Asc)

In-situ
In-situ(ave.)
AMSR2(Asc)
AMSR2(Des)
Validation over Thailand

Ascending passes

Descending passes

Ascending/Descending passes

Thailand Khon Kean (Asc.)

Thailand Khon Kean (Des.)

Thailand Khon Kean (Des/Asc)

In-situ soil moisture (%vol)

AMSR2 soil moisture (%vol)

Num.=45
R=0.720
RMSE=14.561
Bias=-10.671
MAE=12.297

Num.=55
R=0.580
RMSE=15.213
Bias=-8.554
MAE=12.768

Num.=100
R=0.638
RMSE=14.923
Bias=-9.507
MAE=12.556

Soil Moisture (%vol)

 Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr

In-situ
In-site(ave.)
AMSR2(Asc)
AMSR2(Des)
In the evaluation of all sites together (above), the SMC error in MAE meets the required “release accuracy”. However, characteristics and sizes of errors depend on the validation sites and their condition. Further in-situ data collection and validation are necessary to assess the errors of SMC product.
Snow Depth (SND)
Snow Depth (SND)

• **Algorithm PI**
 – Richard Kelly, University of Waterloo

• **Product status**
 – SND algorithm Ver. 1.00, using L1R brightness temperatures Ver. 1.10 released on 1 March 2013 as inputs. Slope/offset values were applied to L1R Tbs to compensate differences between AMSR2 and AMSR-E calibrations.
 – At present, snow depths are calculated using the AMSR-E snow depth algorithm with parameters of AMSR-E.
 – The land-water mask has been improved and the team is working on improvements to other flag areas (mountains, ocean, swath gaps).

• **Caveats**
 – There is a tendency to overestimate snow extent over the Tibetan Plateau and other high elevation plateau areas.
 – Algorithm development and validation is ongoing. Improved lake fraction, atmospheric and forest cover effects are being ameliorated. Improved retrieval scheme is being developed.
Snow Depth (SND)

• Validation results
 – Global Summary of the Day (GSOD) distributed by NOAA National Climate Data Center were used for validation. By prescreening the data, 1007 locations were selected through several conditions (e.g., 10% areas of water body within 40km distance, less data deficiency).
 – Match-up conditions: within 1-day of observing time difference and 7 km of distance.
 – SND errors are evaluated using the Mean Absolute Error (MAE) metric. In-situ data indicating more than 100 cm snow depth were excluded from evaluation.
 – Validation period: October 1, 2012 – March 31, 2013

• References
Snow Depth: New Water Bodies Mask

Improved parameterization of water bodies using a high resolution lakes outline vector data set.
Error Statistics (Ascending+Descending)

Descending+Ascending

R2

Bias

Mean Absolute Error

Root Mean Square Error

✓ From the validation with GSOD/SND values in the northern hemisphere, overall SND error in MAE meets the required “release accuracy.”

✓ However, characteristics and sizes of errors differ for different surface types and seasons. Also, as described in “caveats” section, there are some areas with problems (e.g., Tibetan plateau), and algorithm improvement is ongoing.

<table>
<thead>
<tr>
<th>Validation</th>
<th>Required (Release)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 cm</td>
<td>20 cm</td>
</tr>
</tbody>
</table>

(MAE)