

JAXA Earth Observation Missions

Keiji Imaoka + many contributors Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA)

> Mini-Workshop on A-Train Science Tokyo, Japan March 8, 2013

Current and Near-Term Future Missions

Global Change Observation Mission - GCOM -

- Demonstrate long-term global observation of various geophysical parameters for understanding climate variability and water cycle.
- Two medium-sized satellites with three generations to ensure 10-15 years stable data records.

Overview of GCOM Products

GCOM 1st Generation Satellites

• 2 types of medium-sized satellites and 3 generations: 10-15 years observation

GCOM-W1 (Water)

GCOM-C1 (Climate)

Instrument	Advanced Microwave Scanning Radiometer-2	Instrument	Second-generation Global Imager
Orbit	Sun Synchronous orbit Altitude: 699.6km (on Equator) Inclination: 98.2 degrees Local sun time: 13:30+/-15 min	Orbit	Sun Synchronous orbit Altitude: 798km (on Equator) Inclination: 98.6 deg. Local sun time: 10:30+/- 15min
Size	5.1m (X) * 17.5m (Y) * 3.4m (Z) (on-orbit)	Size	4.6m (X) * 16.3m (Y) * 2.8m (Z) (on orbit)
Mass	1991kg	Mass	2093kg
Power gen.	More than 3880W (EOL)	Power gen.	More than 4000W (EOL)
Launch	May 18, 2012	Launch	JFY 2015 (TBD)
Design Life	5-years	Design Life	5-years

SGLI Instrument

- Improvement of land, coastal, and aerosol observations.
 - fine (250m) spatial resolution
 - polarization/along-track slant view

shortwav	e & thermal
InfraRed (T) Scanner (IRS)
	Polarization (along- track slant) radiometer

SGLI: Secon generation GLobal Imager

push-broom Radiometer 250m over land or coastal area, and

(P) Visible & Near infrared

(VNR)

					V.	1km o	ver offshore
				SGLI c	hannels		
		λ	Δλ	L _{std}	L _{max}	SNR at Lstd	FOV
	СН	VN, P, S T: µ	SW: nm um	VN W/m² T: K	N, Ρ: ²/sr/μm Kelvin	VN, P, SW: - T: NE∆T	m
	VN1	380	10	60	210	250	250
	VN2	412	10	75	250	400	250
	VN3	443	10	64	400	300	250
	VN4	490	10	53	120	400	250
	VN5	530	20	41	350	250	250
	VN6	565	20	33	90	400	250
	VN7	673.5	20	23	62	400	250
\geq	VN8	673.5	20	25	210	250	250
	VN9	763	12	40	350	1200(@1km)	250
	VN10	868.5	20	8	30	400	250
≻	VN11	868.5	20	30	300	200	250
≯	P1	673.5	20	25	250	250	1000
≯	P2	868.5	20	30	300	250	1000
	SW1	1050	20	57	248	500	1000
	SW2	1380	20	8	103	150	1000
	SW3	1630	200	3	50	57	250
	SW4	2210	50	1.9	20	211	1000
	T1	10.8	0.7	300	340	0.2	500/250
	T2	12.0	0.7	300	340	0.2	500/ <mark>250</mark>

GCOM-C SGL	I characteristics (Current baseline)
Orbit	Sun-synchronous (descending local time: 10:30) Altitude: 798km, Inclination: 98.6deg	
Launch Date	Jan. 2014 (HII-A)	
Mission Life	5 years (3 satellites; total 13 years)	
Scan	Push-broom electric scan (VNR: VN & P) Wisk-broom mechanical scan (IRS: SW & T)	
Scan width	1150km cross track (VNR: VN & P) 1400km cross track (IRS: SW & T)	
Digitalization	12bit	Multi-analo
Polarization	3 polarization angles for P	obs. for
Along track direction	Nadir for VN, SW and T, +45 deg and -45 deg for P	674nm and 869nm
On-board calibration	 VN: Solar diffuser, Internal lamp (LED, halogen), Lunar by pitch maneuvers (~once/month), and dark current by masked pixels and nighttime obs. SW: Solar diffuser, Internal lamp, Lunar, and dark current by deep space window T: Black body and dark current by deep space window All: Electric cardion 	

Spaceborne Cloud & Precipitation Radar Development

Tropical Rainfall Measuring Mission - TRMM -

- Focused on rainfall observation. First instantaneous rainfall observation by three different sensors (PR, TMI, VIRS). PR, active sensor, can observe 3D structure of rainfall.
- Targeting tropical and subtropical region, and chose non-sunsynchronous orbit (inc. angle 35 degree) to observe diurnal variation.

US-Japan joint mission

Japan: PR, launch US: satellite, TMI, VIRS, CERES, LIS, operation

Launch	28 Nov. 1997 (JST)
Altitude	About 350km (since 2001, boosted to 402km to extend mission operation)
Inc. angle	About 35 degree, non-sun- synchronous orbit
Design life	3-year and 2month (still operating)
Instruments	Precipitation Radar (PR) TRMM Microwave Imager (TMI) Visible Infrared Scanner (VIRS) Lightning Imaging Sensor (LIS) CERES (not in operation)

GSMaP

Typhoon MORAKOT (09W): Aug. 5 – 10, 2009 (Big impact in Chinese Taipei) Rain 0.1

- Rapidly changing precipitation phenomena need frequent observations.
- Global rainfall map merging TRMM, polar orbiting microwave radiometer/sounders, and geostationary infrared radiometers.

http://sharaku.eorc.jaxa.jp/GSMaP/

10.0 15.0 20.0 25.0 30.0 [mm/hr]

Global Precipitation Measurement

 GPM: An international satellite mission to be launched by JAXA and NASA in 2014 for precipitation measurements worldwide

Core Satellite (JAXA, NASA) Dual-frequency precipitation radar (DPR) GPM Microwave Imager (GMI)

- Precipitation with high precision
- Discrimination between rain and snow
- Adjustment of data from constellation satellites (The core satellite will fly in non-sun-synchronous orbit.)

(launch in 2014)

Constellation Satellites (International Partners)

Microwave radiometers Microwave sounders

Global precipitation every 3 hours

(launch around 2014)

- Improve the accuracy of both long-term and short-term weather forecasts
- Improve water resource management in river control and irrigation systems for agriculture

DPR on GPM Core Satellite

Preparation in Progress

Satellite Photo Credit: NASA

Earth Cloud, Aerosol and Radiation Explorer (EarthCARE)

To reduce the uncertainties in global warming prediction by measuring the three dimensional structure of clouds and aerosols, which are most uncertain parameter in the numerical climate models.

- Joint Mission by Europe and Japan
- 3 years lifetime
- 400 km altitude
- Sun-synchronous orbit (Local time: 14:00)

EarthCARE Instruments

- Four instruments
 - Cloud Profiling RADAR (JAXA/NICT)
 - Atmospheric LIDAR (ESA)
 - Multi-Spectral Imager (ESA)
 - Broad Band Radiometer (ESA)

CPR Engineering Model

Overview of CPR

- EarthCARE CPR is the first millimeter-wave Doppler radar in space for Earth observation developed by JAXA and NICT.
- 94GHz of W-band is selected for center frequency to penetrate deep into the clouds from the orbit and retrieve the cloud vertical profiles and motions.
- The antenna employs offset Cassegrain type, and has a deployable main reflector with the largest aperture for W-band Earth observation satellite.
- CPR observes clouds along the sub-satellite track.

Greenhouse Gases Observing SATellite 4 - GOSAT -

- Monitoring global distribution of Greenhouse Gases from space.
- Observe Carbon dioxide and Methane at 100-1000km spatial scale with relative accuracy of 1% (4ppm) for CO2 and 2% (34ppb) for CH4.
- Joint project by JAXA, NIES (National Institute for Environmental Studies), and MOE (Ministry of the Environment).
- Launch: 23 January 2009 by H2A launch vehicle
- Mission lifetime: 5 years to 2014

GOSAT satellite at Tanegashima Spece Center

TANSO= <u>Thermal And Near</u> infrared <u>Sensor</u> for carbon <u>Observation</u>

TANSO-FTS (Fourier Transform Spectrometer)

TANSO-CAI (Cloud and Aerosol Imager)

TANSO-FTS Spectral Coverage

21

Advanced Land Observing Satellite - ALOS "DAICHI" -PRISM

Operation:

24 Jan. 2006 by H-2A Rocket #8 12 May 2011 Mission ended ~22 Apr. 2011: Low Load Mode (LLM) > 1,934 days=5.3 years

Objectives:

- Cartography (1/25,000 scale)
- Regional environmental monitoring
- Disaster monitoring, etc.

PRISM

AVNIR-2

PALSAR

Panchromatic Remote sensingAdvanced Visible and Near-Infrared Instrument for Stereo Mapping Radiometer type 2

PRISM can acquire triplet stereo imageries by nadir-, forward-, and backward-radiometers with 2.5m spatial resolution in 35km swath.

AVNIR-2 can observe with 10m resolution in 70km swath, and it can be changed the observation area by pointing capability within +/-44 deg. in across track.

PALSAR Phased Array type L-band Synthetic Aperture Radar

AVNIR-2

PALSAR can acquire the data in not only daytime but also nighttime as well as cloudy and rainy whether conditions.

Global and high resolution observation by radar and optical sensors

High resolution (1-3 m) and wide observation area (50-350 km swath)

✓ Fine and clear images under the heavy rain or night condition

Research Activities for Future Missions

Earth Observation utilizing ISS

CIRC

- SMILES: Detection of atmospheric limb emission in the submillimeter wave range (624-650GHz) with high sensitivity. NICT and JAXA cooperation.
- JAXA is promoting EO missions such as:
 - Live broadcasting of global phenomena by astronauts
 - Kibo Exposed Facility payloads
 - Compact InfraRed Camera (CIRC)
 - CO2 Lidar, Doppler lidar, etc.

SMILES

CIRC

Candidates onboard Kibo-Exposed Facility on ISS

iLOVE iss-jem Lidar Observation of Vegetation Environment

> Tree canopy height, Biomass

APOLLO Air Pollution Observing mission

Kibo-EF on ISS

- High-spacial resolution observation from low orbit (APOLLO: 1-2km, Other:7-25km)
- **Diurnal variation** observation from low inclination orbit

Vegetation LIDAR

Observation of canopy height by LiDAR (laser radar) with high accuracy to improve biomass estimations.

- ✓ Experimental proof for future carbon-balance monitoring system of forestry ecosystem.
- ✓ The vegetation lidar observes 3D-sturucture of vegetation including canopy-height, which will enable us to estimate the forestry biomass on the ground.
- ✓ To verify potential of biomass estimation with collaborative observation between the vegetation lidar and a L-band SAR system (such as ALOS-2).

COMPIRA

Coastal and Ocean measurement Mission with Precise and Innovative Radar Altimeter

Wide-swath altimetry with interferometric SAR

COMPIRA Sensor System

<u>Measurement of absolute sea surface height with wide-swath and</u> <u>high precision will be realized</u> by combining <u>SHIOSAI (Interferometric</u> <u>SAR sensor; to obtain relative height)</u> and <u>nadir pointing radar</u> <u>altimeter (to obtain absolute height).</u>

Geostationary Imaging FTS

Observation of atmospheric pollution in Asia and trans-boundary pollution

Frequent sounding of temperature, water vapor and wind profiles.

Geostationary Imaging FTS

Expanding the GOSAT FTS technology

Large-Aperture MWR

 Experiences and existing technologies in microwave radiometer (MWR) and large deployable reflector (LDR).

- High-res requirements for lower frequency channels (C and L) to retrieve soil moisture, SST, and SSS.
- Applications in agriculture, food security, and ocean safety.

Submillimeter-Wave Radiometer

Submillimeter wave radiometer (190GHz – 1THz) can capture two dimensional columnar ice amount for both thick convective clouds and anvil clouds.

Super Low Altitude Test Satellite (SLATS)

Concept of Super Low Altitude Satellite

- \checkmark Much lower than LEO altitude: about 200km altitude
- \checkmark Cancel the air drag effect by ion engine thrust in order to maintain the altitude
- Enable high performance earth observation by small resource sensor
 - High spatial resolution in optical Earth observation
 - Active sensing such as SAR and LIDAR with low electric power
- **G** "SLATS" is engineering test satellite before operational Super Low Altitude Satellites ✓ Verification of super low altitude satellite system, measurement of atmospheric density in super low altitude, and monitoring on-orbit data about atomic oxygen.

Orbit	Mission: 250-180km Circular	
Size (on- orbit)	$2.5m(X) \times 5.2m(Y) \times 0.9m(Z)$	
Mass	about 400kg	
Mission life	lission life (dependent on injection orbit)	
Mission sensor	(1) AO Monitoring System(AMO)(a) QCM Sensor and Controller (AOFS)(b) Material Degradation Monitor (Optical Camera)(MDM)(2) Small Optical Sensor for imaging the earth(OPS)	

Overview of Super Low Altitude Test Satellite (SLATS)

Current and Near-Future JAXA EO Missions

GCOM-C: Long-term observation of the horizontal distribution of aerosol, cloud, and ecosystem CO₂ absorption and discharge Long-term observation of water-cycle such as the snow/ice coverage, water vapor, and SST
 GOSAT: Observation of distribution and flux of the atmospheric greenhouse gases, CO₂ and CH₄
 EarthCARE/CPR: Observation of vertical structure of clouds and aerosols
 GPM/DPR: Accurate and frequent observation of precipitation with active and passive sensors
 ALOS-2,3: Fine resolution mapping by optical and SAR instruments
 Demonstration of new missions (e.g., SMILES, GLISM, etc.)

Thank you for your attention.