

Early test results of protoflight test of Second Generation Global Imager (SGLI), Infrared Scanning Radiometer (IRS)

Kazuhiro TANAKA GCOM project team/JAXA April, 2016

Empowered by Innovation

@ SPIE Asia-Pacific 2016 at New Dehli, India

NEC

http://suzaku.eorc.jaxa.jp/GCOM_C/index_j.html

Contents

- GCOM mission and satellites
- SGLI specification and IRS overview
- Current Status
- IRS Proto Flight Test
 - Verification Flow
 - Verification Matrix
- Early Test Results
 - Geometric Performance Test
 - Radiometric Performance Test for Shortwave Infrared Channels
 - Radiometric Peformance Test for Thermal Infrared Channels
 - Spectral Response
- Conclusion

Global Change Observation Mission (GCOM)

- Global observation satellite system as JAXA's GEOSS contribution.
- 2 satellite series for 5 years, total 13 years observation.
 - ✓ <u>GCOM-W</u> Microwave radiometric observation for <u>WATER CYCLE</u> using AMSR2 (AMSR-E follow on)
 - ✓ <u>GCOM-C</u> Optical multi-channel observation for <u>RADIATION</u> <u>BUDGET</u> and <u>CARBON CYCLE</u> using SGLI (GLI follow on)

Second generation Global Imager (SGLI) on GCOM-C satellite

SGLI Specification

 The SGLI features are <u>250m spatial resolution (VNR-NP, SW3 & TIR</u>) and <u>polarization/along-track slant view</u> channels (VNR-PL), which will improve land, coastal, and aerosol observations.

area, and 1km over offshore

	GCOM-C SGLI characteristics		SGLI channels							
	Sun-synchronous		λ	Δλ	L _{std}	L _{max}	NP, PL, SW	IFOV		
Orhit	(descending local time: 10:30)	CH		ار ۱/۱۷ ۱/۱۷ s	NP, P	L, SWI:	SNR at Lstd			
	Altitude 798km Inclination 98 6deg			um	W/m ²	²/sr/µm	TIR: ΝΕΔΤ	\ m		
Mission Life	E voare (2 satallitae: total 12 voars)			μ	TIR:	Kelvin	at 300K			
		VN1	380	10	60	210	250	250		
Scan	Push-broom electric scan (VNR)	VN2	412	10	75	250	400	250		
	Wisk-broom mechanical scan (IRS)	VN3	443	10	64	400	300	250		
	1150km cross track (VNR: NP & PL)	VN4	490	10	53	120	400	250		
Scan width	1400km cross track (IRS: SWI & TIR)	VN5	530	20	41	350	250	250		
Digitalization	12hite	VN6	565	20	33	90	400	250		
Digitalization	Multi-angle	VN7	673.5	20	23	62	400	250		
Polarization	3 polarization angles for PL obs. for	> VN8	673.5	20	25	210	250	250		
Along track	Nadir for NP, SWI and TIR, 674nm and	VN9	763	12	40	350	1200	250 /1000		
direction	+45 deg and -45 deg for PL	VN10	868.5	20	8	30	400	250		
	VN· Solar diffuser. LED. Lunar cal	→ VN11	868.5	20	30	300	200	250		
	maneuvers and dark current by	PL1	673.5	20	25	250	250	1000		
	masked nivels and nighttime obs	PL2	868.5	20	30	300	250	1000		
On-board	Illaskeu pikeis and hightenne obs.	SW1	1050	20	57	248	500	1000		
calibration	SWI: SOIAL UITUSEL, LED, LUITAL, ATU UALK	SW2	1380	20	8	103	150	1000		
	current by deep space window	SW3	1630	200	3	50	57	250 /1000		
	TIR: Black body and back ground by deep	SW4	2210	50	1.9	20	211	1000		
	space window	T1	10.8	0.7	300	340	0.2	250 /1000		
		T2	12.0	0.7	300	340	0.2	250/1000		

Infrared Scanning Radiometer (SGLI-IRS)

6

Current Status

- SGLI consists of two sensors, SGLI-VNR and SGLI-IRS
- IRS sensor system manufacturing and integration were finished.
- The sensor level pre-flight tests started in December 2014.
- IRS test is in the final stage before the delivery to the satellite system.
- Satellite level test will start within 2016 and planned for launch in 2017.

Verification Flow of IRS-SRU PFT

GCOM

Verification Matrix of IRS-SRU Proto Flight Test (PFT)

	Component Test & Integration	Initial Electric Performance Test (I-EPT)	Thermal Vaccum Test (TVT)	EMC Test	Vibration Acoustice Excitation	Final Electric Performance Test (F-EPT)
Geometry						
FOV, IFOV	Component	Rotation Table	-	-	-	Rotation Table
MTF	Component	Rotation Table	-	-	-	Rotation Table
Alignment	Integration	Rotation Table	Cube Mirror	-	Cube Mirror	Rotation Table
Scanning Perfomance	Component	Rotation Table	Resolver	Resolver	Resolver	Rotation Table
Registration	Component	Rotation Table	-	-	-	Rotation Table
SWI Radiometry						
Dynamic Range	Component	Integrating Sphere	-	-	-	Integrating Sphere
SNR	Component	Integrating Sphere	-	-	-	Integrating Sphere
Linearity	Component	Integrating Sphere	-	-	-	Integrating Sphere
Detector Uniformity	Component	Integrating Sphere	-	-	-	Integrating Sphere
Stability (Dark, Signal)	Component	Integrating Sphere	-	-	-	Integrating Sphere
Onboard Calibrator (Halogen)	Component	Calibrator Test	Calibrator Test	Calibrator Test	Calibrator Test	Calibrator Test
Onboard Calibrator (LED)	Component	Calibrator Test	Calibrator Test	Calibrator Test	Calibrator Test	Calibrator Test
Onboard Calibrator (Light Guide)	Component	Angle Dependence	-	-	-	-
TIR Radiometry						
Dynamic Range / Background	Component	-	TVT Test	-	-	-
NEdT	Component	Black Body	TVT Test	Black Body	Black Body	Black Body
Linearity	Component	-	TVT Test	-	-	-
Detector Uniformity	Component	Black Body	TVT Test	Black Body	Black Body	Black Body
Detector Temperature	Component	Ambient Test	TVT Test	Ambient Test	Ambient Test	Ambient Test
BlackBody (On-Board)	Component	Ambient Test	TVT Test	Ambient Test	Ambient Test	Ambient Test
BlackBody (Ambient)	Component	Ambient BBC / LN2	-	Ambient BBC	Ambient BBC	Ambient BBC
BlackBody (TVT)	-	-	TVT Test	-	-	-

- Objectives
 - to confirm that IRS was integrated mechanically as designed
 - to obtain the geometry data processing parameters after the launch
- detector position and alignment is measured
 - rotation stage (3 rotation axis, 2 linear translation)
 - collimator (halogen lamp for shortwave IR, black body for thermal IR)
- Test results :
 - MTF > 0.35 req.
 - detector position < 0.2 pixel (250m) accuracy

Radiometric Performance Test Shortwave Infrared (SWI) channels

- Objectives
 - $\,\circ\,$ to confirm that IRS/SWI was integrated radiometrically as designed
 - $^{\circ}\,$ to obtain the gain parameter for the data processing
- Traceable to the Japanese national standard
 - Gold coated integrated sphere developed by JAXA's sensor group
 - Calibrated with fixed point black body
- Test results :
 - all requirements met.
 - Small offset non-linearity in high temperature ; under study
 - The humidity effects in 1.36micron channels ; under study.

Ch	λς	Band Width	Signal Level (min)					Gain			Noise					
			Lmax		Ls	Lstd		Saturation	Saturation Gain	Linearity Error (max)		Sigma (max)			SNR	
			Radiance	Corrected	Radiance	Corrected	Dark	(4095DN)	(min)	Lstd	Worst	Lmax	Lstd	Dark	Lstd	Spee
	[micron]	[nm]	[W*]	[DN]	[W*]	[DN]	[DN]	[W*]	W*/DN	[%]	[D N]	[D N]	[D N]	[DN]	(min)	spec.
SWI-1	1.05	21.8	253.3	3529.0	58.2	811.5	102.1	282.3	0.0707	0.2%	5.1	1.5	0.9	0.8	942	500
SWI-2	1.38	20.7	102.4	3385.4	8.3	270.3	99.8	118.6	0.0297	-0.9%	-8.6	4.1	0.8	0.8	329	150
SWI-3	1.63	191.3	49.8	3723.6	3.0	220.0	93.2	50.5	0.0127	-1.1%	-7.7	3.8	2.2	2.0	100	57
SWI-4	2.21	51.9	20.0	3668.5	1.9	342.8	97.0	21.4	0.0054	-0.1%	3.3	2.2	0.9	0.9	368	211

 $[W^*] = [W/m2/str/\mu m]$

SPIE Asia-Pacfic 2016, New Dehli, India

Linearity (preliminary)

- a. 1.6µm LED with temperature correction for the absolute reference
- b. Halogen color temperature and emissivity estimation from the lab. data
- c. Relative and absolute calibration for all 4 channels
- d. Total calibration error is estimated as 1.6 to 4.3 % (1 σ ;preliminary)

Radiometric Performance Test Thermal Infrared (TIR) channels

- Objectives
 - to confirm that IRS/TIR was integrated radiometrically as designed.
 - $\,\circ\,$ to obtain the gain parameter
- Specially designed black body for the thermal vacuum environment
- Test results :

under calculation

Ch	λς	Dand	Signal Level (min)					Back	Gain			Noise					
		Width	Tmax		Tstd		Saturation	Ground	Gain	Error	Error (worst)		Sigma (max)			NEdT [K]	
			Radiance	Corrected	Radiance	Corrected	(4095DN)	(max)	300K	Tstd	Worst	Tmax	Tstd	Space	Tstd	Spec.	
	[mic	ron]	[K]	[DN]	[K]	[DN]	[340K]	[DN]	[K/DN]	[%]	[%]	[DN]	[DN]	[D N]	(max)	(500m)	
	10.78	0.74	340	2150.0	300	1263.4	158%	534.9	0.0528	0.35%	1.89%	1.3	1.2	1.1	0.06	0.2	
11K-1				2146.0		1257.7	138%	986.8	0.0529	0.35%	-0.88%	1.4	1.3	1.3	0.07	0.2	
TIR-2	11.97	0.77	340	2071.9	300 -	1261.0	159%	676.3	0.0579	-0.44%	-1.99%	1.6	1.5	1.5	0.09	0.2	
				2056.1		1260.5	133%	1225.1	0.0579	-0.80%	-1.97%	1.8	1.8	1.7	0.10	0.2	

250m resolution, TDI = YES, Upper = BOL(COLD) / Lower = EOL(HOT)

Linearity (250m, TDI=YES) (preliminary)

			FWHM Spectral	Response [nm]		Weighted Spectral Response [nm]					
		Center	Half Re	sponse		Center	Half Re				
		Wavelength	velength Lower Upper Band width Wavelength Wavelength		Wavelength	Lower Wavelength	Upper Wavelength	Band width			
	SWI-1	1,054.93	1,044.40	1,065.45	21.05	1,054.86	1,043.90	1,065.69	21.78		
	SWI-2	1,385.31	1,375.25	1,395.37	20.12	1,385.34	1,375.01	1,395.66	20.65		
	SWI-3	1,633.70	1,536.20	1,731.20	195.00	1,634.65	1,539.36	1,730.62	191.26		
	SWI-4	2,210.62	2,185.43	2,235.81	50.38	2,210.91	2,184.73	2,236.59	51.86		
	TIR-1	10,782.67	10,414.98	11,150.35	735.37	10,787.18	10,420.94	11,156.63	735.69		
20	TIR-2	11,974.75	11,581.97	12,367.53	785.56	11,952.36	11,557.59	12,327.17	769.58		

G

SPIE Asia-Pacfic 2016, New Dehli, India 17

- SGLI consists of two sensors, SGLI-VNR and SGLI-IRS
- IRS sensor system manufacturing and integration were finished.
- The sensor level pre-flight tests started in December 2014.
- IRS test is in the final stage before the delivery to the satellite system.
- Satellite level test will start in 2016 and planned for launch in 2017.

