The development status of Second Generation Global Imager (SGLI), Infrared Scanning Radiometer (IRS)

October 14, 2014 SPIE Asia-Pacific, Beijing

Kazuhiro TANAKA

GCOM project/JAXA

Empowered by Innovation

http://suzaku.eorc.jaxa.jp/GCOM_C/index_j.html

Contents

- GCOM mission and GCOM-C satellite
- ✓ Current Status
- The development status and key components performance of Infrared Scanning Radiometer (IRS)
- Conclusion

Second generation Global Imager (SGLI) on GCOM-C satellite

Current Status

- Critical Design Review (CDR) of SGLI sensor and GCOM-C satellite was held in 2013.
 - \rightarrow The flight model (PFM) manufacturing was approved.
- The manufacturing of SGLI key flight parts, such as optics, filters, detectors or coolers, is almost finished and under the final inspection for the components assembly and tests.
- SRU sensor system integration and test is ongoing until early 2015. The sensor level pre-flight tests will be done in 2015.
- Satellite level test will start in 2015 and planned for launch in JFY 2016.

SGLI Performance

 The SGLI features are <u>250m (VNR-NP, SW3 & TIR)</u> <u>spatial resolution</u> and <u>polarization/along-track slant view</u> channels (VNR-PL), which will improve land, coastal, and aerosol observations.

Orbit	Sun-synchronous (descending local time: 10:30) Altitude 798km, Inclination 98.6deg						
Mission Life	5 years (3 satellites; total 13 years)						
Scan	Push-broom electric scan (VNR) Wisk-broom mechanical scan (IRS)						
Scan width	1150km cross track (VNR: VN & P) 1400km cross track (IRS: SW & T)						
Digitalization	12bit	A 10					
Polarization	3 polarization angles for P	obs. for					
Along track direction	Nadir for VN, SW and T, +45 deg and -45 deg for P	674nm and 869nm					
On-board calibration	 VN: Solar diffuser, LED, Lunar cal maneuvers, and dark current by masked pixels and nighttime obs. SW: Solar diffuser, LED, Lunar, and dark current by deep space window T: Black body and dark current by deep space window 						

250m over the Land or coastal area, and 1km over offshore

SGLI channels									
	λ	Δλ	L_{std}	L _{max}		IFOV			
СН	NP, PL, SWI: nm T: μm		NP, PL, SWI: W/m²/sr/μm T: Kelvin		SNR at Lstd T: NEAT	m			
VN1	380	10	60	210	250	250			
VN2	412	10	75	250	400	250			
VN3	443	10	64	400	300	250			
VN4	490	10	53	120	400	250			
VN5	530	20	41	350	250	250			
VN6	565	20	33	90	400	250			
VN7	673.5	20	23	62	400	250			
VN8	673.5	20	25	210	250	250			
VN9	763	12	40	350	1200	250 /1000			
VN10	868.5	20	8	30	400	250			
VN11	868.5	20	30	300	200	250			
PL1	673.5	20	25	250	250	1000			
PL2	868.5	20	30	300	250	1000			
SW1	1050	20	57	248	500	1000			
SW2	1380	20	8	103	150	1000			
SW3	1630	200	3	50	57	250			
SW4	2210	50	1.9	20	211	1000			
T1	10.8	0.7	300	340	0.2	250 /1000			
T2	12.0	0.7	300	340	0.2	250 /1000			

The development status of SGLI-IRS, Oct 14, 2014, SPIE Beijing

TIR : 500m resolution is also used.

The development status of SGLI-IRS, Oct 14, 2014, SPIE Beijing

IRS scanning mirror

- 45deg tilting folding octagonal mirror.
- Mirror is coated aluminum with above 84% reflectance and polarization ratio is less than 1.4% including the telescope and SWI-BPF effects.
 - The effect of mechanical stress to the mirror flatness is also considered with the light weight requirement (1.1kg).

IRS scanning mechanism

- Geometric accuracy req. is 0.5 pixel of 250m.
- High rotation stability and measurement accuracy.
- AC servo motor with slot less type to avoid the torque disturbance.
- The low surface pressure bearing with the high reliability lubrication.

IRS telescope

- Ritchey-chretien type coated aluminum telescope. (F/2.64, f=448mm, 170mm aperture)
- The several optical shields optimized to prevent the undesired stray light path.
- Thermally controlled within narrow room temperature range for 5 years operation
- The minimum depth of focus is tested with MTF 60% requirement.

SWI focal plane assembly (SWI-DET)

□ InGaAs type SWI PD array with 4band BPF.

- The detector array is cooled at -30deg using peltier electronic cooler with PI control circuit in order to reduce the dark signal of 2.2micron channel.
- □ TIA circuit designed for low noise readout.
- AR coated window and filled with Xeon gas.

TIR focal plane assembly (TIR-DET)

- PV type MCT detector with cold BPF in the LWIRD filled with Neon gas.
- Cooler assembly with cryogenic dewar for the 55+/-0.1K with PI controlled heater.
- I40micron (250m) big pixel output using 28micron small pixel summation.
- Commandable selection table for poor performance sub-pixel deselection.

Long Wave Infrared Detector (LWIRD)

Cooler Assembly | 2

IRS spectral performance

The development status of SGLI-IRS, Oct 14, 2014, SPIE Beijing

SGLI-N-TD-14119_0930_SGLI SWI 総合波長特性[第4版].xlsx SGLI-N-TD-14238_0909_SGLI TIR 総合波長特性[第2版].xlsx 13

Black Body

- Black body is used for thermal channels calibration on-orbit with cold space response.
- The sensor background signal is canceled in two points calibration techniques. The emissivity of black body is better than 98%.

LED-Halogen light assembly

- LED-Halogen light assembly is used to monitor the sensor output between pre-flight calibration and on-orbit.
- Relative spectral shape is only checked with halogen lamp output. The absolute response comparison is by 1.6micron LED output in SW3 channel.
- SWI calibration activity is planned for every 8 days on orbit. Calibration maneuver such as lunar calibration and solar beta angle dependency check is also planned on orbit for the reliable calibration.

SWI LED assembly

SWI LED PD assembly

SWI Halogen assembly

IRS integration and tests

- IRS flight model sensor integration activity is ongoing.
- All components and panels are thermally baked before integration under thermal vacuum conditions to prevent outgas effects to IRS optical system.
- Optical bench with key optical components is located in the middle of SRU baseplate.
- Integration activity is planned in 2014 autumn period, and Preflight Test (PFT) including optical performance check starts at the end of 2014.

Summary

- ✓ SGLI flight model manufacturing is ongoing.
- Key IRS flight component test results are presented.
- Sensor integration & test will be started within this year.
- ✓ Target launch of GCOM-C is JFY2016.