# GCOM-C/SGLI Wild Fire detection and Fire Radiative Power (FRP) retrieval ATBD

#### Yukio Kurihara

#### JAXA/EORC

Ver. 0.0: Aug. 2020

### 1 Introduction

This document presents the technical background of the wildfire detection and the fire radiative power (FRP) retrieval for the Second Generation Global Imager (SGLI) onboard the Global Change Observation Mission-Climate (GCOM-C) satellite. Details on the GCOM mission, GCOM-C, and SGLI are described in Imaoka et al. [2010].

## 2 Data

Short wavelength infrared (SWIR) data at the SW3 (1.6  $\mu m$ ) and SW4 (2.9  $\mu m$ ) channels (Table 1) are used to detect hot spots and to determine the fire radiative power (FRP).

| Ch.** | λ         | $\wedge \lambda$ | Letd. Liman                             |           | SNR at Letd                          | IFOV             |
|-------|-----------|------------------|-----------------------------------------|-----------|--------------------------------------|------------------|
|       | [nm]      | [ <i>nm</i> ]    | $\left[ \frac{W/m^2}{sr/\mu m} \right]$ |           | Sector and Esta                      |                  |
| VN1   | 380       | 10               | 60                                      | 240-241   | 624-675                              | 250 / 1000       |
| VN2   | 412       | 10               | 75                                      | 305-318   | 786-826                              | 250 / 1000       |
| VN3   | 443       | 10               | 64                                      | 457-467   | 487-531                              | 250 / 1000       |
| VN4   | 490       | 10               | 53                                      | 147-150   | 858-870                              | 250 / 1000       |
| VN5   | 530       | 20               | 41                                      | 361-364   | 457-522                              | 250 / 1000       |
| VN6   | 565       | 20               | 33                                      | 95-96     | 1027-1064                            | 250 / 1000       |
| VN7   | 673.5     | 10               | 23                                      | 69-70     | 988-1088                             | 250 / 1000       |
| VN8   | 673.5     | 20               | 25                                      | 213-217   | 537-564                              | 250 / 1000       |
| VN9   | 763       | 8                | 40                                      | 351 - 359 | 1592-1746                            | 1000             |
| VN10  | 868.5     | 20               | 8                                       | 37-38     | 470-510                              | 250 / 1000       |
| VN11  | 868.5     | 20               | 30                                      | 305-306   | 471-511                              | 250 / 1000       |
| P1    | 670       | 20               | 25                                      | 293       | 609                                  | 1000             |
| P2    | 865       | 20               | 30                                      | 396       | 646                                  | 1000             |
| SW1   | 1050      | 20               | 57                                      | 289.2     | 951.8                                | 1000             |
| SW2   | 1380      | 20               | 8                                       | 118.9     | 347.3                                | 1000             |
| SW3   | 1640      | 200              | 3                                       | 50.6      | 100.5                                | 250 / 1000       |
| SW4   | 2210      | 50               | 1.9                                     | 21.7      | 378.7                                | 1000             |
| Ch.   | λ         | $\Delta\lambda$  | $T_{std}, T_{max}$                      |           | NE $\triangle$ T at T <sub>std</sub> | IFOV             |
|       | $[\mu m]$ | $[\mu m]$        | [K]                                     |           |                                      | [m]              |
| T1    | 10.8      | 0.7              | 300                                     | 340       | 0.08                                 | 250 / 500 / 1000 |
| T2    | 12.0      | 0.7              | 300                                     | 340       | 0.13                                 | 250 / 500 / 1000 |

Table 1. SGLI channel specifications

L: signal level, SNR: signal noise ratio, NE $\Delta$ T: noise equivalent temperature difference, VN, P: non-polarization and polarization channel of VNR. SW, T: short-wavelength-infrared and thermal infrared channel of IRS.

## 3 Processing flow

SW3 and SW4 data (albedo) are translated into the radiances (hereinafter, denoted by  $L_{SW3}$  and  $L_{SW4}$ ) at (a). Then, hot spots are detected through (b)–(e) and FRP is determined at (f). Finally, a report is generated at (g).



Figure 1

## 4 Algorithm

#### 4.1 Hot spot detection

Pixels, where  $L_{SW3}$  and/or  $L_{SW4}$  are larger than the three times of the noise level  $(3\sigma_e)$ , are selected at (b) in the flow. Then, selected pixels are divided into clusters at (c) by grouping the data spatially connected. Here, the method uses  $\sigma_e$  determined by  $L_{std}/SNR$  by using  $L_{std}$  and SNR in Table 1. The step (d) compares the maximum radiance in each cluster with the threshold of  $4\sigma_e$ . If the maximum radiance exceeds the threshold at SW3 or at SW4, all pixels in the cluster are detected as hot spots. Figure 2 shows the area fraction and the temperature range of the hot spot which is detectable by SW3 and SW4. Finally, a confidence level (Table 2) is decided for each hot spot at (e). Land cover types are quoted from the MODIS Land Cover Type Product. Detection frequency (Fig. 3) was generated at each  $0.05 \times 0.05$ -degree latitude-longitude grid by using hot spots detected for 2018 and 2019. Each threshold was arrived at empirically.



Figure 2. The fraction and temperature range of hot spots detectable with SW3 and SW4. Wildfire levels and those temperatures are quoted from Wooster et al. [2003]. The blue and red bottom lines denote the detection limit, and the top lines the saturation levels.



Figure 3. Frequently detected hot spots.

Table 2. Confidence level

| Level | Description                           |
|-------|---------------------------------------|
| 1     | $L < 8\sigma_e$ for land pixel,       |
|       | $L < 32\sigma_e$ for water pixel,     |
|       | non vegetated (snow, ice, barren), or |
|       | detection frequency $> 50\%$          |
| 2     | $L < 16\sigma_e$                      |
| 3     | $L < 32\sigma_e$                      |
| 4     | $L < 64\sigma_e$                      |
| 5     | $L \ge 64\sigma_e$                    |

#### 4.2 FRP

Following Wooster et al. [2003], FRP is determined by performing the MIR radiance method on the SWIR data. The determination formula is

$$FRP_{MIR} = \left(\frac{\sigma\varepsilon_f}{a\varepsilon_{f,MIR}}\right) L_{f,MIR}.$$
(1)

Here,  $\sigma$  is the Stefan-Boltzmann constant,  $\varepsilon_f$  is the fire emissivity over all wavelengths,  $\varepsilon_{f,MIR}$  is the fire emissivity for the MIR wavelength, a is a constant coefficient, and  $L_{f,MIR}$  denotes the radiance of fire at MIR. In application of (1) to SWIR,  $\varepsilon_f$  and  $\varepsilon_{f,MIR}$  were assumed to be 1.0, and  $L_{f,MIR}$  was replaced by  $L_{SW3}$  or  $L_{SW4}$ ; this was based on the assumption that SW3 and SW4 are insensitive to background temperatures. The coefficient was determined by using numerically simulated data (Table 3).

Table 3. FRP coefficients

|    |         |        | $T_f$ (1    | K) | $\sigma/c$                       | ı  | Qualit         | ty flag     |         |
|----|---------|--------|-------------|----|----------------------------------|----|----------------|-------------|---------|
|    | SV      | $V3_1$ | 600         | )  | 133.9                            | 21 | 1              | L           | ]       |
|    | $SW3_2$ |        | 800         |    | 1639.2                           |    | 2              |             |         |
|    | $SW4_1$ |        | 650         |    | 100.254                          |    | 3              |             |         |
|    | $SW4_2$ |        | 700         |    | 65.93                            | 56 | 4              | 1           |         |
|    | $SW4_3$ |        | 700         |    | 65.9356                          |    | 5              |             |         |
|    |         |        |             |    |                                  |    |                |             |         |
|    |         |        |             |    |                                  |    | SW3            |             |         |
|    |         |        |             | L< | $< 3\sigma_e$ L <l<sub>r</l<sub> |    | $\leq L_{max}$ | $L \ge L_n$ | na      |
| SV | V4      | L<     | $3\sigma_e$ |    |                                  | S  | $W3_1$         |             |         |
|    |         | L<     | $L_{max}$   | S  | $W4_1$                           | S  | $W4_2$         | SW4         | $1_{3}$ |

L≧L<sub>mas</sub>

SW3<sub>2</sub>

## 5 Report (Alert)

If there is any hot spot detected, an alert file is generated. The alert data consists of two parts: a header part and a data part. The header part is denoted by the '#' at the start of each record. The data acquisition and processed date and time and parameter names are provided in the header. The data part holds detected hot spots and determined FRPs in the comma-separated values (CSV) format. Table 4 shows the parameters described in the data part. The hot center indicates the hottest pixel in the fire cluster. Each fire cluster can be specified by gathering the hot spots associated with the same hot center. Note that the alert file is not generated if there is no hot spot detected.

| column | parameter       | description                      |
|--------|-----------------|----------------------------------|
| 1      | Hot-spot ID     |                                  |
| 2      | Year            |                                  |
| 3      | Month           |                                  |
| 4      | Day             |                                  |
| 5      | Time            | hhmn in UTC                      |
| 6      | Latitude        |                                  |
| 7      | Longitude       |                                  |
| 8      | Area            | Area factor $(1/\cos(\theta_z))$ |
| 9      | Volcano         | 0: no volcano, 1: volcanos       |
| 10     | Reliability     | Table 2                          |
| 11     | FRP             | $Wm^{-2}$                        |
| 12     | Quality flag    | Table 3                          |
| 13     | Hot center (ID) | Hottest pixel in the cluster     |

Table 4. Data in the report

## 6 Limitation

Because the reflected sunlight prevents detecting hot spots, the algorithm is limited only for nighttime. Note that the algorithm is disabled at high latitudes during the nights with the midnight sun.

#### 7 Issues

The followings are the major issues with the wildfire detection and FRP retrieval method for SGLI data.

- 1. Hot spot detection for daytime is an issue that needs to be investigated in the future.
- 2. FRP determination is still tentative and needs to be improved in the future.

## References

- Imaoka, K., Kachi, M., Fujii, H., Murakami, H., Hori, M., Ono, A., Igarashi, T., Nakagawa, K., Oki, T., Honda, Y., and Shimoda, H. (2010). Global change observation mission (gcom) for monitoring carbon, water cycles, and climate change. Proceedings of the IEEE, 98(5):717–734.
- Wooster, M., Zhukov, B., and Oertel, D. (2003). Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sensing of Environment, 86(1):83 – 107.