

Summary of the SGLI products Validation results (Ver. 3.00)

Earth Observation Research Center Japan Aerospace Exploration Agency 25 Nov. 2021

History

23 Dec. 2017 GCOM-C (SHIKISAI) launched from Tanegashima Space Center 01 Jan. 2018 Release of the SGLI First-light images 28 Mar. 2018 Initial function verification completed Public release of first version Level- 1 and Level- 2 SGLI products 20 Dec. 2018 Aug. 2019 GCOM-C Science team decided version-up products Public release of second version Level- 1 and Level- 2 SGLI products Jun. 2020 30 Aug. 2021 Online mini-workshop 07 Sep. 2021 SGLI user committee meeting 29 Nov. 2021 Public release of third version Level- 2 SGLI products Late 2022 Final review for the full/extra success of GCOM-C mission

Validation summary of the SGLI L1/L2 products

GCOM-C Success criteria (*data production aspect only*)

Success	Minimum Success	Full Success	Extra Success
Level	[L + 1 yr]	[L + 5 yr]	[L + 5 yr]
Standard Products	Complete the Cal. & Val. phase and start data distribution of <u>more than 20 products</u> achieving the <u>release accuracy</u> <u>thresholds</u>	Achieve <u>standard accuracy</u> <u>thresholds</u> of <u>all standard</u> <u>products</u>	Achieve <u>target</u> <u>accuracy thresholds</u> of one or more standard products

Results of the version-upgrade validation

Level/Area [The number of products]	L1 [1]	Land [9]	Atmosphere [8]	Ocean [7]	Cryosphere [4]	Total [29]
Release accuracy	1	9	8	7	4	29
Standard accuracy	1	9 (+5)	8 (+3)	7 (+2)	4 (+2)	29 (+12)
Target accuracy*	0	0	2	1 (±0)	0	3 (±0)

*the number of products achieved standard and target accuracy threshold The numbers in parentheses are the differences of achieved product number from Ver.1. Confirmation of achievement of standards and target accuracy will take place five years after launch.

Twelve products achieved newly standard accuracy through version-upgrade validation.

Standard products version up summary

-	Product	Algorithm	Validation	Ver.3 Major changes
L1	Level-1	J,	AXA	Correction for sensor sensitivity aging Reduction of linear noise (VNR) and horizontal stripes (TIR)
-	Product	Algorithm	Validation	Ver.3 Major changes
	Precise geometric correction	J,	AXA	NA
	Atmospheric corrected reflectance (incl. cloud detection)	JAXA	Land PIs	Revise of BRDF estimation and update QA
	Vegetation Index			NA
and	Shadow Index	La	nd PI	Brush up the estimation coefficient and validation method and added solar altitude data
	Above-ground biomass	Land PIs	Land PIs	Update LUTs based on GEDI's observed data
	Vegetation roughness index	La	nd PI	NA
	fAPAR	14X4 Land DI	Land Dic	Lindate of forest structure man using SCLI
	Leaf area Index	JAAA, Lahu FI	Lanu Pis	opuate of forest structure map using SGLI
	Land surface temperature	La	nd PI	Revise of cloud screening using CLFG

-	Product	Algorithm	Validation	Ver.3 Major changes
	Cloud flag/Classification	Atmosphere PIs	JAXA, Atmosphere PIs	Add the cloud and heavy aerosol screening using machine learning method focused on
	Classified cloud fraction			the snow region and night-time
ere	Cloud top temp/height			
osph	Water cloud optical thickness/effective radius	Atmosphere PIs	Atmosphere PIs	NA
\tm	Ice cloud optical thickness			
4	Aerosol over the ocean			
	Land aerosol by near ultra-violet	Atmosphere PIs	Atmosphere PIs	Integrated of aerosol retrieval algorithms using polarization channels and non-polarization channels
	Aerosol by polarization			

Standard products version up summary

-	Product	Algorithm	Validation	Ver.3 Major changes
	Normalized water leaving radiance (incl. cloud detection)	Ocean PIs,		Algorithm and QA improvements, including modification of aerosol model and addition
	Atmospheric correction parameters	JAXA		of underwater model.
	Photosynthetically available radiation	JAXA, Ocean PI	Ocean Die	ΝΔ
ean	Chlorophyll-a concentration	JAXA	Ocean Pis	
Ö	Suspended solid concentration	Ocean PI		NA
	Colored dissolved organic matter	Ocean PI		NA
	Sea surface temperature (incl. cloud detection)	J,	AXA	Revised cloud detection

-	Product	Algorithm	Validation	Ver.3 Major changes
Ģ	Snow and ice covered area (incl. cloud detection)			Revised training data set
her	Okhotsk sea-ice distribution			
dsc	Snow and ice surface temperature	Cryosphere PI	Cryosphere PI	Updated emissivity table
Cryc	Snow grain size of shallow layer			Revised training data set Add the Snow Albedo as a research product

Evaluation Status(1/2)

Ver.1/Ver.2 already achieved

Ver.3 newly achieved

	Products	Ver.3 Accuracy	Release Accuracy	Standard Accuracy	Target Accuracy
	Precise geometric correction	VNR:0.15-0.21,IRS:0.15-0.29	<1pixel	<0.5pixel	<0.25pixel
	Atmospheric corrected reflectance (incl. cloud detection)	0.022 (<=443nm) 0.035 (>443nm)	0.3 (<=443nm), 0.2 (>443nm)	0.1 (<=443nm), 0.05 (>443nm)	0.05 (<=443nm), 0.025 (>443nm)
	Vegetation Index* NDVI EVI	Grass:8.4%, Forest:11.8% Grass:16.0%, Forest:14.7%	Grass: 25%, Forest: 20%	Grass: 20%, Forest: 15%	Grass: 10%, Forest: 10%
Lar	Shadow Index	14.0%	30%	20%	10%
ЪГ	Above-ground biomass	Grass:18.2%, Forest:31.9%	Grass : 50%, Forest : 100%	Grass : 30%, Forest : 50%	Grass : 10%, Forest : 20%
	Vegetation roughness index	18.5%	40%	20%	10%
	fAPAR	Grass:26.1%, Forest:8.5%	Grass: 50%, Forest: 50%	Grass: 30%, Forest: 20%	Grass: 20%, Forest: 10%
	Leaf area Index	Grass:28.5%, Forest:28.8%	Grass: 50%, Forest: 50%	Grass: 30%, Forest: 30%	Grass: 20%, Forest: 20%
	Land surface temperature	1.996 K	3.0 K	2.5 K	1.5 K
	Cloud flag/Classification	10.2%	10% (with whole-sky camera)	Incl. below cloud amount	Incl. below cloud amount
	Classified cloud fraction	10.2%	20% (on solar irradiance)	15% (on solar irradiance)	10% (on solar irradiance)
	Cloud top temp/height	-	1K	3K/2km	1.5K/1km
Atmo	Water cloud optical thickness/effective radius	82%	10%/30% (CloutOT/raduis)	100% (as cloud liquid water)	50%/20%
dso	Ice cloud optical thickness	56%	30%	70%	20%
here	Aerosol over the ocean	670nm:0.072 865nm:0.051	0.1 (monthly ta_670,865)	0.1 (Scene ta_670,865)	0.05 (Scene ta_670,865)
	Land aerosol by near UV	0.137	0.15 (monthly ta_380)	0.15 (scene ta 380)	0.1 (scene ta_380)
	Aerosol by polarization	0.137	0.15 (monthly ta_670,865)	0.15 (scene ta_670,855)	0.1 (scene ta_670,865)

V3 updated algorithms

In principle, the numerical values of accuracy targets are defined in terms of root mean square error (RMSE), which has the same units as physical quantities. Note that the accuracy value described in the unit of ratio (%) is evaluated by the ratio between RMSE and the average value of field data. For the flag type product (cloud flag / type), the error rate (%) of the flag is statistically evaluated using the in-situ.

Evaluation Status(1/2)

Ver.1/Ver.2 already achieved

	Products	Ver.3 Accuracy	Release Accuracy	Standard Accuracy	Target Accuracy
	Normalized water leaving	23~45%		50% (<600nm)	30% (<600nm)
	radiance (incl. cloud detection)	(<600nm) 0.50W/m²/sr/um(>600nm)	60% (443~565nm)	0.5W/m²/str/um (>600nm)	0.25W/m²/str/um (>600nm)
	Atmospheric correction parameters	46%	80% (ta_865nm)	50% (ta_865nm)	30% (ta_865nm)
	Photosynthetically available radiation	8.9%	20% (10km/month)	15% (10km/month)	10% (10km/month)
an	Chlorophyll-a concentration	-55~+121%	-60 \sim +150% (offshore)	-60~+150%	-35~+50% (offshore) -50~+100% (coast)
	Suspended solid concentration	-59-+141%	-60 \sim +150% (offshore)	-60~+150%	-50~+100%
	Colored dissolved organic matter	-54~+119%	60% (443~565nm)	-60~+150%	-50~+100%
	Sea surface temperature (incl. cloud detection)	Day:0.4 K,Night:0.4 K	0.8K (daytime)	0.8K (day/night)	0.6K (day/night)
0	Snow and Ice covered area (incl. cloud detection)	6.5%	10% (vicarious val. with other sat. data)	7%	5%
	Okhotsk sea-ice distribution	5.0%	10% (vicarious val. with other sat. data)	5%	3%
sphe	Snow and ice surface Temperature	1.6 K	5K (vicarious val. with other sat. data and climatology data)	2К	1K
re	Snow grain size of shallow layer	50%	100% (vicarious val. with climatology between temp-size)	50%	30%

└─ V3 updated algorithms

In principle, the numerical values of accuracy targets are defined in terms of root mean square error (RMSE), which has the same units as physical quantities. Note that the accuracy value described in the unit of ratio (%) is evaluated by the ratio between RMSE and the average value of field data. For the flag type product (cloud flag / type), the error rate (%) of the flag is statistically evaluated using the in-situ.

Ver.3 newly achieved

Schedule for the GCOM-C mission

FY2016	FY2017	·	FY2018		FY2019	FY2020		FY2021		FY2	2022	
10-11-12 1 - 2 - 3	4 - 5 - 6 7 - 8 - 9 10-11	-12 1 - 2 - 3	4 - 5 - 6 7 - 8 - 9 10-11-12	1-2-3	4 - 5 - 6 7 - 8 - 9 10-11-12 1 - 2 - 3	4 - 5 - 6 7 - 8 - 9 10-11-12	1-2-3	4 - 5 - 6 7 - 8 - 9 10-11-12	1 - 2 - 3	4-5-6 7-8-	10-11-12	1-2-3
Pre-lau dev	nch algorithm elopment	Init	tial Cal./Val.		Algo	rithm improven	nent a	nd validation			n op	Post- ormal eration
Re develop	eview for the oment Completion	GCON	1-C launch	Review data re Ver	v for the Ver. 1 elease and minimum success 1	Review for the data release Ver.2	Ver. 2		Review data re Ver.	r for the Ver. 3 lease Fina 3 full,	al review fo /extra succ	or the cess
Sancar One	ration	Initial	Initial Cal.			Normal Op	eration				Post-	normal
sensor Ope	CH CH	neck-out									Op	eration
Cal.	Sensor performance Evaluation	Cal. f	or the Ver.1 Cal. coef. Determin	ation	Cal. for the Ver.2	Cal fo	<mark>r the Ver</mark>	·.3				
Ground Sy	stem		vi- cal. obs. data Proc.test Coef.	Ver.1 Past dat re-proce	processing	Ver.2 pr roc.tes Past da re-proc	ocessing ta essing	Proc.test	Ver	r.3 processing Past data re-processing		
Developm	ent & Algo.	Improvem	ent for Ver.1	Algo	o. Improvement for Ver.2	Alao. Impro	vement	for Ver.3				
Improven Val.	pent	Accura Evaluati	cy (D) Coef. on (D) Turing Val. for the Ver.1		Val. for the Ver.2	Va	II. for the	2 2 Ver.3	Val. for	the Final rev	iew	
In-situ Observati	on	Grou Field car Ver.1	und truth data mpaigns for the data release		Field campaigns for the	Ver.2/Ver.3 data r	elease	Field	l camp Final	aigns for th Review	e e	

Ver.3 Release - 2021.11.29

Ver.3 Land Products

Evaluation Summary

Product	Release threshold	Standard accuracy	Target accuracy	Status ^{*1}	Evaluation Methods
Precise geometric correction	<1 pixel	<0.5 pixel	<0.25 pixel	Ø	Evaluation of geolocation accuracies with GCPs prepared using AVNIR-2 data.
Atmospheric corrected reflectance (incl. cloud detection)	0.3 (<=443nm) 0.2 (>443nm) (scene)	0.1 (<=443nm) 0.05 (>443nm) (scene)	0.05 (<=443nm), 0.025 (>443nm) (scene)	O	Comparison with in-situ observed reflectance.
Vegetation index	Grass:25% (scene), forest:20% (scene)	Grass:20% (scene), forest:15% (scene)	Grass:10% (scene), forest:10% (scene)	○ ⇒ ◎	Comparison with in-situ observation and other satellite data.
Above-ground biomass	Grass:50%, forest: 100%	Grass:30%, forest:50%	Grass:10%, forest:20%) ⇒	Comparison with in-situ observation (incl. the data from the literatures).
Vegetation roughness index	Grass & forest: 40% (scene)	Grass & forest:20% (scene)	Grass & forest:10% (scene)	○ ⇒ ◎	Comparison with in-situ observations.
Shadow index	Grass & forest: 30% (scene)	Grass & forest:20% (scene)	Grass & forest:10% (scene)	$\bigcirc \Rightarrow \bigcirc$	Comparison with in-situ observations.
fapar	Grass:50%, forest: 50%	Grass:30%, forest:20%	Grass:20%, forest:10%	Ø	Comparison with in-situ observation and other satellite data.
Leaf area index	Grass:50%, forest: 50%	Grass:30%, forest:30%	Grass:20%, forest:20%	$\bigcirc \Rightarrow \bigcirc$	Comparison with in-situ observation.
Surface temperature	<3.0 K (scene)	<2.5 K (scene)	<1.5 K (scene)	Ø	Comparison with in-situ observation and other satellite data.

*1 Symbols denote as follows; O: the release threshold achieved, O: the standard accuracy achieved, rackingtharpiceters: the target accuracy achieved.

GCØN

Atmospheric corrected surface reflectance (RSRF)

✓ Key revisions for Ver.3

- (1) Improvement of cloud and shadow screening
- (2) Add polarization reflectance of PL1 and PL2
- (3) Ocean surface aerosol LUT over the ocean area
- (4) Add correction of radiometric offset calibration
- (5) Reduce processing time
- (6) Bug fix (sample number count of POL, uninitialized value..)
- ✓ The first guess and vicarious calibration gains are not changed for the consistency to the Ver.2 data
- ✓ More improvement will be needed for BRDF especially in NUV-blue bands, and remaining contamination of the cloud shadow
- ✓ All CH achieve the standard accuracy (10CHs achieved the target accuracy for the nadir observations, and 12CHs achieve with BRDF correction in the total 16CHs)

Validation results of Ver. 2 (RSRF)

 ✓ Takayama (PEN), Fujihokuroku (PEN), RadCalNet (Namibia, France, US), RRV (PI Moriyama), Mongolia (PI Nasahara), tottori (PI Susaki)

GCØM-

- ✓ Saz is limited (saz<20deg except for POL
- ✓ smooth surface: Std of 3x3 RSRF is less than 0.01

The accuracy targets are defined as error ratios of "solar zenith angle<30 deg, smooth surface of reflectance ~0.2" Convert to error% by RMS/0.2

Target accuracy (L+5yr)

Validation results of Ver. 3 (RSRF)

- ✓ Takayama (PEN), Fujihokuroku (PEN), RadCalNet (Namibia, France, US), RRV (PI Moriyama), Mongolia (PI Nasahara), tottori (PI Susaki)
- ✓ In-situ is nadir observation: Saz is limited (saz<20deg except for POL)
- ✓ smooth surface: Std of 3x3 RSRF is less than 0.01

The accuracy targets are defined as error ratios of "solar zenith angle<30 deg, smooth surface of reflectance ~0.2" Convert to error% by RMS/0.2

Target accuracy (L+5yr)

0.05 (<=443nm) →25% 0.025 (>443nm) →12.5%

Validation results of Ver. 3 (corr by BRDF)

- ✓ Takayama (PEN), Fujihokuroku (PEN), RadCalNet (Namibia, France, US), RRV (PI Moriyama), Mongolia (PI Nasahara), tottori (PI Susaki)
- ✓ In-situ is nadir observation: Saz (<u>0-51</u> or 53-63deg) is corrected to the nadir by BRDF
- ✓ smooth surface: Std of 3x3 RSRF is less than 0.01

The accuracy targets are defined as error ratios of "solar zenith angle<30 deg, smooth surface of reflectance ~0.2" Convert to error% by RMS/0.2

Target accuracy (L+5yr)

0.05 (<=443nm) →25%

0.025 (>443nm) →12.5%

(Appendix) RSRF: examples of the V2-V3 difference

2021/06/19 T0620 Northeast of Saharan Des.

Siwa

Ver. 2 Ver. 3 ✓ Error of cloud mask due to the short term TIR gain anomaly is recovered

2021/04/22 T0529 Tokyo

✓ Unrealistic reflectance gap between urban and vegetation areas is decreased

(Appendix) Add polarization reflectance of PL1 and PL2 polarization reflectance of PL2 (865nm)

Influence of sunglint or dense aerosol?

GC1SG1_20210501D01D_A0000_L2SG_RSRFF_3000.h5, Param Name= /Image_data/Rp_PL02

(Appendix) Reference: Intensity of PL02

(Appendix) Reference: RGB image (for reference)

(Appendix) (Research product) Shortwave radiation (by TAO/PIRATA/RAMA SWR)

- Comparison with in-situ Daily SWR is provided by NOAA PMEL Global Tropical Moored Buoy Array, TAO/PIRATA/RAMA (https://www.pmel.noaa.gov/gtmba/)
- ✓ 11% does not achieve the SWR target accuracy (monthly 10W/m²); the daily change should be considered in the future version
- ✓ Anomaly is useful for applications such as agriculture and long-term weather monitoring

(Appendix) (Research product) Shortwave radiation (by BSRN SWR)

- ✓ Daily SWR is estimated by instantaneous transmittance of visible channels and stored by 8 bit (/Image_data/SWR)
- ✓ Comparison with in-situ measurements by BSRN
- \checkmark 13% does not achieve the SWR target accuracy (monthly 10W/m²); the daily change should be considered in the future version
- Anomaly is useful for applications such as agriculture and long-term weather monitoring

${\sf T2A/VeGetation}\ Index(VGI): {\sf NDVI}$

GCOM-C

Around the eastern part of Mongolia

Around Japan

T2A/ VGI: NDVI

GCOM-C Cibici diargo Chervatian Mission-dimente

Validation method

- The accuracy of SGLI/NDVI was evaluated using the reference NDVI for forests and grasslands. The reference NDVI was derived from the spectral reflectance measurements at the field observation sites.
- The effects of observation tower were corrected by shielding devices at TKY, FHK and PFRR sites.
- The data was not used for the evaluation when the "prob. cloud" or "shadow" bits are set or when cloud pixels are adjacent.
- The validation pixel was moved for MSE site because the nearest neighbor pixel includes the river.

Validation data and period

- The data obtained at clear weather condition were used for validation, referring to solar radiation and sky cameras synchronized with the ground observation.
 However, the data of the day with the maximum NDVI in 20 days were used for WTR, MBU, MBN, DGT or KYM sites because there is no information of weather condition. The data during snow season were excluded from the evaluation.
- The in-situ spectral reflectance data were upscaled to the SGLI scale using the Sentinel-2A/B Multispectral Imager(MSI) Level 1C/2A data (Band4 and 8b) for TKY, FHK, PFRR, and MSE sites.

- Validation period: TKY [2018/4/1-2021/7/31], FHK [2018/4/1-2019/12/31], TOC [2018/4/26-10/31], PFRR [2018/9/1-9/30], MSE [7/1-8/31 for 2018, 2019, 2020 and 2021], MBN/MBU/DGT/KYM/WTR [the day with the smallest cloud effect within \pm 10 days of field observation]

The standard accuracy is expected to be achieved.

T2A/VeGetation Index(VGI):EVI

Key updates

- \checkmark No modification for the algorithm.
- ✓ Input data [RSRFQ] was changed.
- ✓ Validation data was increased.

Ver.3 EVI(ndvi_MVC, input: Ver.2) [2019/8/29-9/13]

Similar distribution

Ver.2 EVI(ndvi_MVC) [2019/8/29-9/13]

EVI

0

Around Japan

> Distribution is similar to MODIS products. Around the eastern part of Mongolia

GCØM-C

MOD13Q1 [2019/08/29-9/13]

others

T2A/ VGI:EVI

GCOM-C Ebbel Ghange Cherverline Mission-Gilmente

Validation method

- The accuracy of SGLI/EVI was evaluated using the reference EVI for forests and grasslands. The reference EVI was derived from the spectral reflectance measurements at the field observation sites.
- The effects of observation tower were corrected by shielding devices at TKY, FHK and PFRR sites.
- The data was not used for the evaluation when the "prob. cloud" or "shadow" bits are set or when cloud pixels are adjacent. The data was not used for forest sites when the satellite zenith angle is larger than 30 degrees.
- The validation pixel was moved for MSE site because the nearest neighbor pixel includes the river.

Validation data and period

- The data obtained at clear weather condition were used for validation, referring to solar radiation and sky cameras synchronized with the ground observation.
 However, the data of the day with the maximum NDVI in 20 days were used for WTR, MBU, MBN, DGT or KYM sites because there is no information of weather condition. The data during snow season were excluded from the evaluation.
- The in-situ spectral reflectance data were upscaled to the SGLI scale using the Sentinel-2A/B Multispectral Imager(MSI) Level 1C/2A data (Band4 and 8b) for TKY, FHK, PFRR, and MSE sites.

- Validation period: TKY [2018/4/1-2021/7/31], FHK [2018/4/1-2019/12/31], TOC [2018/4/26-10/31], PFRR [2018/9/1-9/30], MSE [7/1-8/31 for 2018, 2019, 2020 and 2021], MBN/MBU/DGT/KYM/WTR [the day with the smallest cloud effect within \pm 10 days of field observation yalidation sites >

Estimated accuracy	Release threshold	Standard accuracy	Target accuracy
20.3 → 14.7 %	20% (Forest) Scene,	15% (Forest) Scene,	10% (Forest) Scene,
16.4 → <mark>16.0</mark> %	25% (Grassland) Scene	20% (Grassland) Scene	10% (Grassland) Scene

The standard accuracy is expected to be achieved.

The list of validation sites

Forests

- FHK: Fuji Hokuroku Flux Observation site, Japan
- Lambir: Lambir Hills site, Malaysia
- PFRR: Poker Flat Research Range site, USA
- TKY: Takayama Deciduous Broadleaf Forest site, Japan
- TOC: Tomakomai Crane Site, Japan
- TSE: Teshio CC-LaG Experiment site, Japan

Grasslands and paddy fields

- DGT: Delgertsogt JAXA Super Site 500, Mongolia
- KYM: Khar Yamaat JAXA Super Site 500, Mongolia
- MBN: Baganuul JAXA Super Site 500, Mongolia
- MBU: Bayan-Unjuul JAXA Super Site 500, Mongolia
- MSE: Mase Paddy Flux site, japan
- WTR: Watarase JAXA Super Site 500, Japan

Acknowledgements

- The field data were mainly collected by GCOM-C PIs, AKITSU Tomoko, HONDA Yoshiaki, KAJIWARA Koji, KOBAYASHI Hideki, MORIYAMA Masao, NAGAI Shin, NASAHARA Kenlo Nishida, and SUSAKI Junichi.
- ✓ The CGLS/GIOGL1_LAI300, FAPAR300 and NDVI300 products were used for the comparison with SGLI products in this article. They were generated by the global component of the Land Service of Copernicus, the Earth Observation program of the European Commission. The research leading to the current version of the product has received funding from various European Commission Research and Technical Development programs. The products are based on PROBA−V 333m data ((c) Belgian Science Policy and distributed by VITO NV).
- ✓ Sentinel-2A/B Multispectral Imager(MSI) Level-1C/2A data were produced by European Space Agency (ESA). They were acquired from the Copernicus Open Access Hub of the ESA.
- ✓ MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 were acquired from NASA EOSDIS Land Processes DAAC from https://lpdaac.usgs.gov, maintained by the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) at the USGS Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.

References

- Akitsu, T. K., Nakaji, T., Yoshida, T., Sakai, R., Mamiya, W., Terigele, Takagi, K., Honda, Y., Kajiwara K., Nasahara, K. N., 2020. Field data for satellite validation and forest structure modeling in a pure and sparse forest of Picea glehnii in northern Hokkaido. *Ecological Research*, 2020, pp.1–15. doi:10.1111/1440–1703.12114.
- Akitsu, T. K., Nakaji, T., Kobayashi, H., Okano, T., Honda, Y., Bayarsaikhan, U., Terigele, Hayashi, M., Hiura, T., Ide, R., Igarashi, S., Kajiwara, K., Kumikawa, S., Matsuoka, Y., Nakano, Ta., Nakano, To., Okuda, A., Sato, T., Tachiiri, K., Takahashi, Y., Uchida, J., Nasahara, K. N., 2020. Large-scale ecological field data for satellite validation in deciduous forests and grasslands. *Ecological Research*, 2020, ERDP-2020-16.1.1(http://db.cger.nies.go.jp/JaLTER/metacat/metacat/ERDP-2020-16.1.1/jalter-en)
- Kobayashi, H., Nagai, S., Kim, Y., Yang, W., Ikeda, K., Ikawa, H., Nagano, H. and Suzuki, R., 2018. In situ observations reveal how spectral reflectance responds to growing season phenology of an open evergreen forest in Alaska. *Remote Sensing*, 10(7), p.1071. (Data are available from Arctic Data archive System (ADS), Japan, https://ads.nipr.ac.jp/dataset/A20181212-002)

T2A/ ShaDow Index(SDI)

GCOM-C Child Change Chestration Mission-Allmatic

Key updates

- ✓ Revision of coefficients for estimating SDI.
- ✓ Addition of "Cosine_of_solor_incidence" calculated from DEM and solar geometry in Geometry data.
- \checkmark Modification of QA flag.

Validation method

- SGLI/SDI is evaluated by the shadow-areas truth data calculated using the in-situ observation data.
- The shadow-areas truth data are generated based on the DSM data from USGS 3 Dimensional Elevation Programme (3DEP) and Solar Zenith Angle (SZA). SGLI/SDI is compared with the shadow-areas truth data correspond to each SGLI pixel (250[m]).
- The land pixels (Landwater=100) with NDVI > 0.75 are validated. The pixels adjacent to cloud or probably cloud are excluded from validation.

< Estimated SDI >

< Validation >

Sitename	Patches	l lie
WA_Western_South	20	V04H0
WI_Statewide	16	V04H1
MA_ME	7	V04H12
CA_FEMA	20	V05H0
UT_WashingtonCo	7	V05H0
FL_Panhandle_B3	14	V05H1
FL SRWMD	6	V05H1

Estimated accuracy	Release threshold	Standard accuracy	Target accuracy
26.3 → 14.0 %	30% (Forest · Grassland) Scene	20% (Forest · Grassland) Scene	10% (Forest Grassland) Scene

The standard accuracy is expected to be achieved.

T2B/ Leaf Area Index (LAI)

Key updates

✓ Creation of base map using SGLI data and increase of forest cover type from 7 to 17 types → The estimation accuracy is improved.

GC.ØM-

- ✓ Modification of LUTs and reduction of LAI-intervals at low LAI \rightarrow The estimation accuracy is improved.
- ✓ Increase of the site for validation: Yona-site (Evergreen broadleaf forest)

T2B/ Leaf Area Index (LAI)

Validation method

- The accuracy of SGLI/LAI was evaluated using the reference LAI data at validation sites for forests and grasslands. The reference LAI was derived from in-situ observation data.

SGLI data used for validation

- The daily SGLI/LAI was averaged for 11 days and compared with reference LAI [PFRR/Lambir/TMM/Yamashiro: date of field data acquisition ±5 days in 2020, other sites: date and year of field data acquisition ± 5 days.]. The period was extended for another 11 days if there was only one day or less of valid data within the 11 days.

- RSRFQ ver.2 was used as input data for LAI retrieval.
- The data was not used for the evaluation when the "cloud shadow", "bad air condition", "backup algorithm" or "poor quality" bits were set, though the data with "poor quality" bit were used when all the data were set as "poor quality" for one month.

The standard accuracy is expected to be achieved.

T2B/ Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)

Key updates

- ✓ Creation of base map using SGLI data and increase of forest cover type from 7 to 17 types → The estimation accuracy is improved.
- ✓ Modification of LUTs \rightarrow The estimation accuracy is improved.

Ver.3 T2B/FAPAR [2020/08/01-10] (input: Ver.2)

CGLS/GIOGL1_FAPAR300_V1.1.1 [2020/08/01-10]

Ver.2 T2B/FAPAR

Ver. 2 T2B/FAPAR [2020/08/01-10]

The estimation accuracy was improved.

Around Ver.3 T2B/FAPAR

T2B/ FAPAR

Validation method

- The accuracy of SGLI/FAPAR was evaluated using the reference FAPAR (total FAPAR) data at validation sites < Validation sites > for forests and grasslands. The reference total FAPAR was derived from in-situ observation data.
- In addition to SGLI/green FAPAR (T2B output value), SGLI/total FAPAR was evaluated to assess with the same FAPAR definition as the validation data in forests. SGLI/total FAPAR was re-estimated from SGLI data using the same algorithm with T2B,.

SGLI data used for validation

- The daily SGLI/FAPAR was averaged for 11 days and compared with reference FAPAR [PFRR: date of field data acquisition ± 5 days in 2020, other sites: date and year of field data acquisition ± 5 days.]. The period was extended for another 11 days if there was only one day or less of valid data within the 11 days.
- RSRFQ ver.2 was used as input data for FAPAR retrieval.
- The data was not used for the evaluation when the "cloud shadow", "bad air condition", "backup algorithm" or "poor quality" bits were set.

Estimated accuracy	Release threshold	Standard accuracy	Target accuracy
Forest: $16.9\% \rightarrow 10.4\%^{*1}$	50% (Forest),	20% (Forest),	10% (Forest),
Grassland: $7.1\% \rightarrow 6.3\%$	50% (Grassland)	30% (Grassland)	20% (Grassland)

^{*1} Validation for green FAPAR, though the total FAPAR was used as in-situ data

*2 Validation for total FAPAR.

The standard accuracy is expected to be achieved.

The list of validation sites

Forests

- AK06: AK06 Alaska Forest site, USA
- FHK: Fuji Hokuroku Flux Observation site, Japan
- Lambir: Lambir Hills site, Malaysia
- Lambir Oil Palm: Lambir Oil Palm Plantation site, Malaysia
- PFRR: Poker Flat Research Range site, USA
- SSP: Spasskaya Pad site, Russia
- TKY: Takayama Deciduous Broadleaf Forest site, Japan
- TMM: Tokachi Mitsumata JAXA Super Site 500, Japan
- TOC: Tomakomai Crane Site, Japan
- TOS: Hokkaido University Tomakomai Experimental Forest site, Japan
- TSE: Teshio CC-LaG Experiment site, Japan
- URY: Hokkaido University Uryu Experimental Forest site, Japan
- YNF: Yona Field, Japan
- Yamashiro: Yamashiro site, Japan

Grasslands and paddy fields

- DGT: Delgertsogt JAXA Super Site 500, Mongolia
- KYM: Khar Yamaat JAXA Super Site 500, Mongolia
- MBN: Baganuul JAXA Super Site 500, Mongolia
- MBU: Bayan-Unjuul JAXA Super Site 500, Mongolia
- MSE: Mase Paddy Flux site, japan
- WTR: Watarase JAXA Super Site 500, Japan

Acknowledgements

- The field data were mainly collected by GCOM-C PIs, AKITSU Tomoko, HONDA Yoshiaki, KAJIWARA Koji, KOBAYASHI Hideki, MORIYAMA Masao, NAGAI Shin, NASAHARA Kenlo Nishida, and SUSAKI Junichi.
- ✓ The CGLS/GIOGL1_LAI300, FAPAR300 and NDVI300 products were used for the comparison with SGLI products in this article. They were generated by the global component of the Land Service of Copernicus, the Earth Observation program of the European Commission. The research leading to the current version of the product has received funding from various European Commission Research and Technical Development programs. The products are based on PROBA−V 333m data ((c) Belgian Science Policy and distributed by VITO NV).
- ✓ Sentinel-3A daily FAPAR (OLCI Global Vegetal Index (faPAR)) were used for the comparison with SGLI/FAPAR. They were produced by European Space Agency (ESA) and acquired from the Copernicus Open Access Hub of the ESA.

References

- Akitsu, T. K., Nakaji, T., Yoshida, T., Sakai, R., Mamiya, W., Terigele, Takagi, K., Honda, Y., Kajiwara K., Nasahara, K. N., 2020. Field data for satellite validation and forest structure modeling in a pure and sparse forest of Picea glehnii in northern Hokkaido. *Ecological Research*, 2020, pp.1–15. doi:10.1111/1440–1703.12114.
- Akitsu, T. K., Nakaji, T., Kobayashi, H., Okano, T., Honda, Y., Bayarsaikhan, U., Terigele, Hayashi, M., Hiura, T., Ide, R., Igarashi, S., Kajiwara, K., Kumikawa, S., Matsuoka, Y., Nakano, Ta., Nakano, To., Okuda, A., Sato, T., Tachiiri, K., Takahashi, Y., Uchida, J., Nasahara, K. N., 2020. Large-scale ecological field data for satellite validation in deciduous forests and grasslands. *Ecological Research*, 2020, ERDP-2020-16.1.1(http://db.cger.nies.go.jp/JaLTER/metacat/metacat/ERDP-2020-16.1.1/jalter-en)
- Kobayashi, H., Nagai, S., Kim, Y., Yang, W., Ikeda, K., Ikawa, H., Nagano, H. and Suzuki, R., 2018. In situ observations reveal how spectral reflectance responds to growing season phenology of an open evergreen forest in Alaska. *Remote Sensing*, 10(7), p.1071. (Data are available from Arctic Data archive System (ADS), Japan, https://ads.nipr.ac.jp/dataset/A20181212-002)
- Nagai, S., Kotani, A., Sato, T., Sugimoto, A., Maximov, T. C., Nogovitcyn, A., Miyamoto, Y., Kobayashi, H., and Tei, S. (in press). Direct measurement of leaf area index in a deciduous needle-leaf forest, eastern Siberia, *Polar Science*, (in press).

T3A/ Above Ground Biomass(AGB)

Key updates

- ✓ AGB values estimated from GEDI data were used for the determination of the coefficients of LUT in evergreen broadleaved forests and mixed forest. The GEDI spot values were spatially extended for this purpose. → The AGB underestimation has been improved mainly in tropical forests.
- ✓ The coefficients of LUT was assigned differently for each latitude, mainly north of 40° N. → AGB gaps were resolved.
- \checkmark All validation data were reviewed, and the data inappropriate for validation were excluded.

ver.3 AGB (input: RSRFQ ver.2) [2020/08/01-31]

ver.2 AGB (input: RSRFQ ver.2) [2020/08/01-31]

% The data with the QA information of low quality, probably cloud or bad geometry was not used in these maps.

< Detailed ma for South America>

The AGB underestimation of ver. 2 algorithm in tropical forests has been improved.

T3A/ AGB

Validation method

- The accuracy of SGLI/AGB was evaluated using the reference AGB data at validation sites for forests and grasslands. The reference AGB was derived from in-situ observation data.
- The validation data was selected by considering spatial uniformity, vegetation type, and topography, etc.

SGLI data used for validation

- Forests: The daily SGLI/AGB from August 1, 2020 to August 31, 2020 were averaged and compared with the reference AGB regarding the forest biomass as that stay consistent for one month.
- Grasslands: The daily SGLI/AGB was averaged for 21 days [date and year of field data acquisition ± 10 days] and compared with the reference AGB.
- RSRFQ ver.2 was used as input data.
- The data was not used for the evaluation when the "low quality", "probably cloud" or "bad geometry" bits were set.

600 Forests: mean 315.51 [t/ha], rmse 152.8 Grassland: mean 0.79 [t/ha], rmse 0.37 num. of plots=159 num. of plots=2 500 Retrieved AGB [t/ha] rieved AGB [t/ha] 200 gti 0.5 100 森林:48,449 草原: 47.57 100 200 500 0 300 400 600 ٥ 0.5 1.5 Reference AGB [t/ha] Reference AGB [t/ha]

Validation results for ver.2

The estimation accuracy was improved in tropical forest.

Estimated accuracy	Release threshold	Standard accuracy	Target accuracy
Forest: 48.4% → 31.9%	100% (Forest),	50% (Forest),	20% (Forest),
Grassland: 47.6% → 18.2%	50% (Grassland)	30% (Grassland)	10% (Grassland)

The standard accuracy is expected to be achieved.

T3A/ Vegetation Roughness Index(VRI)

No updates

Ver.3 VRI [input: ver.2]

Validation method

- SGLI/ VRI was evaluated using reference VRI. Reference VRI was calculated from the same equation with T3A using in-situ observed directional surface reflectance factor data which was collected for the same sun-target-satellite geometry with SGLI data.
- The SGLI data is not used when the quality flag indicates cloud, probably cloud or pol. cloud.

Validation period

- SGLI/VRI: May 1, 2018 to June 10, 2018 (daily data). Only the data with $\pm 10^{\circ}$ of the view zenith angle for the in-situ data is used.
- Reference VRI: May 21, 2018 at WTR site

-- : standard accuracy

The standard accuracy is expected to be achieved.

Estimated accuracy	Release threshold	Standard accuracy	Target accuracy
18.5%	40% (Forest, Grassland)	20% (Forest, Grassland)	10% (Forest, Grassland)
	scene	scene	scene 36

Acknowledgements

✓ The validation data were mainly collected from literature survey by NAGAI Shin, GCOM-C PI. The field data were collected by GCOM-C PI and AKITSU Tomoko.

References

- Akitsu, T. K., Nakaji, T., Yoshida, T., Sakai, R., Mamiya, W., Terigele, Takagi, K., Honda, Y., Kajiwara K., Nasahara, K. N., 2020. Field data for satellite validation and forest structure modeling in a pure and sparse forest of Picea glehnii in northern Hokkaido. *Ecological Research*, 2020, pp.1–15. doi:10.1111/1440–1703.12114.
- Akitsu, T. K., Nakaji, T., Kobayashi, H., Okano, T., Honda, Y., Bayarsaikhan, U., Terigele, Hayashi, M., Hiura, T., Ide, R., Igarashi, S., Kajiwara, K., Kumikawa, S., Matsuoka, Y., Nakano, Ta., Nakano, To., Okuda, A., Sato, T., Tachiiri, K., Takahashi, Y., Uchida, J., Nasahara, K. N., 2020. Large-scale ecological field data for satellite validation in deciduous forests and grasslands. *Ecological Research*, 2020, ERDP-2020-16.1.1(<u>http://db.cger.nies.go.jp/JaLTER/metacat/metacat/ERDP-2020-16.1.1/jalter-en</u>)
- Motohka Takeshi, 2012. Measurement of biomass to verify forest carbon stocks in Riau province, Sumatora, Indonesia. Phase 2.
- Baker, T. R., et al., 2004. Increasing biomass in Amazonian forest plots. *Phil. Trans. R. Soc. Lond. B*, 359, pp.353–365. 10.1098/rstb.2003.1422. Dataset is in ForC-db, <u>https://github.com/forc-db/ForC</u>
- Lewis, S. L., et al., 2009. Increasing carbon storage in intact African tropical forests. *Nature*, 457, pp.1003–1006.
 10.1038/nature07771. Dataset is in ForC-db, <u>https://github.com/forc-db/ForC</u>
- Chave, J., et al., 2003. Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. The Journal of ecology, 91(2), pp.240–252. 10.1046/j.1365–2745.2003.00757.x
- Liu, L. B., et al., 2016. Forest biomass and net primary productivity in southwestern China: A meta-analysis focusing on environmental driving factors. *forests*, 7(8), 173. DOI: 10.3390/f7080173
- Slik, J. W. F., et al., 2009. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests. *Global Ecology and Biogeography*, 19, pp.50–60. DOI: 10.1111/j.1466-8238.2009.00489.x
- Lourens, P., et al., 2016. Biomass resilience of Neotropical secondary forests. *Nature*, 530, pp211–214. doi:10.1038/nature16512
- > Akiyama, T. 2006. Analysing water shed vegetation changes along space and time by remote sensing.

Ver.3 Atmosphere Products

Evaluation Summary

Product	Release threshold	Standard accuracy	Target accuracy	Status ^{*1}	Evaluation Methods
Cloud flag/Classification	10% (with whole-sky camera)	Incl. below cloud amount	Incl. below cloud amount	☆	Comparison with in-situ observation (sky-camera images) for release threshold. Evaluations for standard and target accuracies were performed as the Classified cloud fraction products.
Classified cloud fraction	20% (on solar irradiance)	15% (on solar irradiance)	10% (on solar irradiance)	☆	Comparison of SGLI-derived solar irradiance using cloud products including cloud flag, cloud fraction etc. with ground-measured solar irradiance.
Cloud top temp/height	1 K	3 K/2 km (top temp/height)	1.5 K/1 km (temp/height)	Ø	Evaluation was made as vi-cal. of SGLI TIR bands for the release threshold. In addition, comparison with other satellite data for evaluating the achievement of the standard accuracy.
Water cloud OT/effective radius	10%/30% (CloudOT/radius)	100% (as cloud liquid water)	50% / 20%	$\bigcirc \rightarrow \bigcirc$	Comparison with in-situ observation.
Ice cloud optical thickness	30%	70%	20%	$\bigcirc \rightarrow \bigcirc$	Comparison with in-situ observation.
Aerosol over the ocean	0.1 (Monthly τa_670,865)	0.1 (scene τa_670,865)	0.05 (scene τa_670,865)	$\bigcirc \rightarrow \bigcirc$	Comparison with in-situ observation.
Land aerosol by near ultra violet →Aerosol over the land	0.15 (Monthly τa_380)	0.15 (scene τa_380)	0.1 (scene τa_380)	Ø	Comparison with in-situ observation.
Aerosol by Polarization →Merged to ARNP	0.15 (Monthlyτa_670, 865)	0.15 (scene τa_670,865)	0.1 (scene τa_670,865)	O	Comparison with in-situ observation and other satellite (MODIS) data.

*1 Symbols denote as follows; O: the release threshold achieved, O: the standard accuracy achieved, rackingtharphi: the target accuracy achieved.

39

CLFG (CLoud FlaG)

Algorithm PI : Takashi NakajimaImplement + V3 update : Kazuhisa Tanada

Problems of V2 CLFG

Misclassification	Impact
$ (1) day: snow(O) \rightarrow land clear(\times) $	Overestimation in ARNP/AOT
②day: heavy aerosol(\bigcirc)→cloud(×)	Decreasing effective pixels in ARNP
③night: snow, clear(\bigcirc) \rightarrow cloud(\times)	Decreasing effective pixels in LST

Method of V3 CLFG

Method:DNN(Deep Neural Network) Ground truth:made by checking the RGB & SIPR images Input data:

day...lat,VN01,03,04,06,09,11, SW03,TI01,02,elavation,date (12 data)

night...lat,TI01,02,elavation,date (5 data)

Output labels:

day...land, ocean, cloud, aerosol, snow (5 labels) night...land&ocean, cloud, aerosol, snow (4 labels)

CLFG (CLoud FlaG)

We chose the SGLI channel which has large coefficient.

Training dataset

We used 500,000 pixels, various locations and periods.

GCØM

Training results

Total Acc = 99.78% 5226469/5238201 land Acc = 99.67% 1230057/1234083 ocean Acc = 99.93% 811784/812343 cloud Acc = 99.84% 1362311/1364443 aerosol Acc = 99.70% 958309/961198 snow Acc = 99.75% 864008/866134

41

CLFG (CLoud FlaG)

Results

We partially solved these issues of V2 CLFG and improved it.

The CLFG product is expected to remain on the target accuracy, because V2 CLAUDIA algorithm is continuously used for the area where there are no misclassifications.

The standard accuracy is expected to be achieved.

(Appendix) CLFG at night

Clear pixels increase by ~ 20% at night (however, still few at high latitudes)

GCØM-C

CLPR (CLoud PRopertis)

- Major changes
 - Algorithm has not been changed
 - Screening the validation data with strictly quality check
- Validation method
 - Comparing with the in-situ observation of sky radiometers
 - Using the average values of SGLI's 5x5 pixels around the in-situ site
 - Only using the in-situ data observed within +/-30 minutes of SGLI observation time.
 - Data period is July 2019 December 2020

Water Clouds

Ice Clouds

Validation result	Release accuracy	Standard accuracy	Target accuracy
<u>Water cloud</u>	(with other satellite)	(with in-situ)	(with in-situ)
Optical thickness: 8-9%(vs. MODIS)	10%	-	20%
Effective radius: 2-5%(vs. MODIS)	30%	-	-
Cloud liquid water: 82.07%(in-situ)	-	100%	50%
<u>Ice cloud</u>	(with other satellite)	(with in-situ)	(with in-situ)
Optical thickness: 55.99%(in-situ)	30%	70%	20%

The standard accuracy is expected to be achieved.

ARNP

45

GOM JAA

- (AeRosol properties using Numerical Prediction)
- Atmosphere Product
- -Aerosol over Land and Ocean
- □ Algorithm (RESTEC Yoshida)
 - Use the forecast from aerosol assimilation system of Himawari-8/AHI as a priori estimate of retrieval.
- □ Major improvement from Ver.2
 - Utilize both polarization and non-polarization observation
 - Consider the error covariance of surface reflectance
 - Apply V3 cloud flag (retrieval of heavy aerosol)
 - Add the estimated uncertainties of aerosol optical thickness, angstrom exponent, and single scattering albedo
 - Integrate output over ocean and land
- □ Channels used
 - Land : VN01, VN02, VN03, VN05, VN08, P02
 - Ocean : VN10, SW01, SW03, SW04, P02

ARNP: Validation methods

- Standard accuracy: RMS errors are evaluated comparing SGLI derived AOT with those from In-situ data (scene by scene)
- In-situ data
 - (1) Land: Sky-radiometer
 - Source: Irie PI@Chiba univ. (SKYNET), Aoki PI@Toyama univ., JMA, AERONET*1
 - Period : March 27, 2018 ~ November 30, 2020 (V2: March 2018, June 2018, Feb. 2018, Jan. 2020, Feb. 2020)
 - (2) Ocean: Microtops on ships
 - Source : AERONET Maritime Aerosol Network*1
 - Period : March 27, 2018 ∼ July 1, 2020 (V2: March 2018, June 2018, Feb. 2019)

*1 Aerosol Robotic Network (Giles et al., 2019; O'Neill et al., 2003), https://aeronet.gsfc.nasa.gov/

- Matchup conditions
 - Observed within 30 minutes
 - SGI AOT is averaged within 10km from in-situ site, where the valid pixel is larger than 50%, and the standard deviation is less than 0.1
 - QA_flag is considered for bit 0,2,3,5,9,10,12,13,15

Bit	ver.3	Description
)	Data Availability	0=Available, 1=Not Available
	Land / Water Flag	0=Water, 1=Land
	Coastal Flag	0=No, 1=Yes
;	Cloud Flag	0=Clear, 1=Cloudy
	Aerosol Optical Thickness Confidence Flag	00=Very Good; 01=Good, 10=Marginal,
	Aerosol Optical Thickness Confidence Flag	11=No Confidence or Fill
,	Angstrom Exponent Confidence Flag	00=Very Good; 01=Good, 10=Marginal,
'	Angstrom Exponent Confidence Flag	11=No Confidence or Fill
}	Aerosol Single Scattering Albedo Confiden	0=Very Good or Good, 1=Marginal or No
	ce Flag	Confidence or Fill
)	Heavy aerosol	0=No, 1=Yes
0	Sunglint Flag	0=No, 1=Yes
1	Stray-Light Flag	0=No, 1=Yes
2	Cloud Shadow Possibility Flag	0=No, 1=Yes
3	Uncertain Surface Reflectance Flag (Turbi	0=No, 1=Yes
	d Water, Snow/Ice Covered Surface or Rt	
	oa_obs < Rtoa_Rayleigh)	
.4	Use Polarization	0=No, 1=Yes
5	A prior of retrieval	0=MODEL, 1=CONSTANT

QA flags in V3

ARNP: Validation results over land

47

GOM KA

- More validation sample number than V2
- Standard accuracy will be archived

ARNP: Validation results over ocean

48

GOM JAXA

<u>AOT over ocean@670nm (Ver. 2)</u> Averaged SGLI within 10km vs. shipborne microtops at the same time AOT over ocean@670nm and 865nm (Ver. 3) Averaged SGLI within 10km vs. shipborne microtops at the same time

Product	Estimated RMSE	Standard accuracy (L+5)	Target accuracy (L+5)
AOT over ocean	0.072@670nm 0.051@865nm (Scene)	0.1 (Scene)	0.05 (Scene)

- More validation sample number than V2
- Standard accuracy will be archived

ARNP: Summary

Product	Period	Evaluation Method	Estimated RMSE	Release	Standard	Target
AOT_ocean @670,865	2018/3/27 ~ 2020/11/30	In-situ (Scene)	0.072@670nm 0.051@865nm (Scene)	0.1 (Month)	0.1 (Scene)	0.05 (Scene)
AOT_land @380	2018/3/27 ~ 2020/11/30	In-situ (Scene)	0.137 (Scene)	0.15 (Month)	0.15 (Scene)	0.10 (Scene)

The standard accuracy is expected to be achieved.

(Appendix) Site maps of ARNP validation data

Blue: Ocean Red: Land

GOM JXA

50

(Appendix) ARNP Image (Tile) Sep. 7 2020 (California Forest fire)

GCOM-C

GCOM-C

Ver.3 Ocean Products

Evaluation Summary

Product	Release threshold	Standard accuracy	Target accuracy	Status ^{*1}	Evaluation Methods
Normalized water leaving radiance (incl. cloud detection)	60% (443~565nm)	50% (<600nm) 0.5W/m²/str/um (>600nm)	30% (<600nm) 0.25W/m²/str/um (>600nm)	0	Comparison with in-situ observation data.
Atmospheric correction parameters	80% (AOT@865nm)	50% (AOT@865nm)	30% (AOT@865nm)	○ ⇒ ◎	Comparison with in-situ observation data.
Photosynthetically available radiation	20% (10km/month)	15% (10km/month)	10% (10km/month)	*	Comparison with in-situ observation data.
Chlorophyll-a concentration	–60~+150% (offshore)	-60~+150%	–35~+50% (offshore), –50~+100% (coast)	0	Comparison with in-situ observation data.
Total suspended matter concentration	–60~+150% (offshore)	-60~+150%	-50~+100%	0	Comparison with other satellite data (GOCI).
Colored dissolved organic matter	–60~+150% (offshore)	-60~+150%	-50~+100%	0	Comparison with in-situ observation and other satellite data (MODIS).
Sea surface temperature	0.8 K (daytime)	0.8 K (day & night time)	0.6 K (day & night time)	*	Comparison with in-situ observation data.

*1 Symbols denote as follows; O: the release threshold achieved, O: the standard accuracy achieved, rackingtharpicerestimate accuracy achieved.

GCØ

Validation Results of Ocean NWLR Products: Normalized Water-Leaving Radiance - NWLR

Major Updates of Algorithm:

- Added water leaving reflectance estimation model in the red(VN07) and near-infrared(VN10) bands using Linear combination index (LCI)
- Applied the vicarious calibration
- Improved sunglint correction method
- Added negative NWLR correction
- Revision of QA flags and Mask for statistics

Validation Method:

Validated the accuracies of predicted NWLR data from the SGLI algorithm comparing with in-situ data: ship observation, buoy(MOBY and BOUSSOLE) and AERONET-OC

Quality Control:

- *In-situ* data: time difference in ± 3 hours to SGLI observation
- SGLI data: average of the data passed the following conditions within a 5 by 5 pixel centered the in-situ point (for details refer to Bailey *et al*, 2006)
 - 13 or more pixels which satisfies the following conditions: aerosol optical thickness < 0.5, solar zenith angle < 70 degrees, NWLR of all channels > 0, CLDAFFCTD flag isn't set.
 - 2. Median CV (coefficient of variation) computed from NWLR_380-565nm and Taua_865nm less than 0.15

Period of Validation:

• January 1, 2018 - July 31, 2021

- NWLR(490nm, 565nm) achieved the target accuracies, NWLR(380-443nm, 530nm, 673.5nm) achieved the standard accuracies.
- Increased number of valid pixels [Version 2]: 117-616 points \rightarrow [Version3]: 133-693 points

Validation Result	Release Accuracy	Standard Accuracy	Target Accuracy
[Ver. 2] 21-42%→[Ver. 3] 23-46%	60%(443-565 nm)	$50\% \ (\leq 600 \text{ nm})$	$30\% \ (\leq 600 \text{ nm})$
[Ver. 2]0.61 → [Ver. 3] 0.499W/m ² /sr/um	N/A	0.5W/m2/sr/um (>600 nm)	0.25W/m2/sr/um (>600 nm)

Validation Results of Ocean NWLR Products: Normalized Water-Leaving Radiance - ACP

57

GOM JAKA

Major Updates of Algorithm:

- Added water leaving reflectance estimation model in the red(VN07) and near-infrared(VN10) bands using Linear combination index (LCI)
- Applied the vicarious calibration
- Improved sunglint correction method
- Added negative NWLR correction
- Described correction formula for TAUA_670 and TAUA_865 in HDF attributes

Validation Method:

Validated the accuracies of predicted aerosol optical thickness at 865nm(Taua_865) from the SGLI algorithm comparing with *in-situ* data of AERONET-OC and AERONET Maritime Aerosol Network (MAN)

Quality Control:

- *In-situ* data: time difference in ± 3 hours to SGLI observation
- SGLI data: average of the data passed the following conditions within a 5 by 5 pixel centered the in-situ point (for details refer to Bailey *et al*, 2006)
 - 1. 13 or more pixels which satisfies the following conditions: aerosol optical thickness < 0.5, solar zenith angle < 70 degrees, NWLR of all channels > 0, CLDAFFCTD, GAMMMA-OUT and OVERITER flags aren't set.
 - 2. Coefficient of variation for TAUA_865 less than 0.05

Period of Validation:

• January 1, 2018 - March 31, 2021

Validation Results of Ocean NWLR Products: **Normalized Water-Leaving Radiance - ACP**

There is a positive bias because the aerosol model used in the atmospheric correction is optimized for NWLR not AOT estimation.

 \rightarrow It is possible to obtain values closer to reality and achieve standard accuracy by applying the correction formula.

Correction formula: TAUA 865 corrected = 0.822 * TAUA 865 + 0.0

Validation Result	Release Accuracy	Standard Accuracy	Target Accuracy	
[Ver. 2] 65% (not corrected) [Ver. 3] 46% (corrected)	80% (AOT@865)	50% (AOT@865)	30% (AOT@865)	
	Achieved Stan	dard Accuracy		58

Photosynthetically available radiation

- Daily PAR is estimated by instantaneous transmittance from visible channels.
- Reference PAR is made from daily SWR observed by buoy, PAR/SWR ration estimated by Pstar-4 calculation and objective analysis water vapor data
- Achieved the target accuracy (No change from ver.2)

Validation result	Release accuracy	Standard accuracy	Target accuracy	
[Ver.2] 9.5%→ [Ver.3] 8.9%	20% (10km/month)	15% (10km/month)	10% (10km/month)	50

GCOM-C Ebbel Grange Observation Alteston effinate

Validation Results of Ocean IWPR Products: Chlorophyll-a Concentration - CHLA

Major Updates of Algorithm:

• None of major updates

Validation Method:

Validated the accuracies of predicted CHLA data from the SGLI algorithm comparing with *in-situ* data(High Performance Liquid Chromatography: HPLC or fluorescence method) of ship observation.

Quality Control:

- *In-situ* data: time difference in ± 3 hours to SGLI observation
- SGLI data: average of the data passed the following conditions within a 5 by 5 pixel centered the in-situ point
 - 13 or more pixels which satisfies the following conditions: aerosol optical thickness < 0.5, solar zenith angle < 70 degrees, NWLR of all channels > 0, CLDAFFCTD flag isn't set.
 - 2. Median CV (coefficient of variation) computed from NWLR_380-565nm and Taua_865nm less than 0.15

Period of Validation:

• January 1, 2018 - December 31, 2020

Valid pixel ratio= number of valid pixels/ number of total pixels

- Achieved Standard Accuracy
- Increased the number of validation points on coastal and sunglint areas because of the improvement of NWLR estimation.

Validation Result	Release Accuracy	Standard Accuracy	Target Accuracy
[Ver. 2] -55~121% →[Ver. 2] -58~137%	-60%~+150%(offshore)	-60%~+150%	-35%~+50%(offshore) -50%~+100%(coastal)

in-situ Chlorophyll-a [mg/m³]

 10^{2}

Validation Results of Ocean IWPR Products: Colored Dissolved Organic Matter - CDOM

Major Updates of Algorithm:

• None of major updates

Validation Method:

Validated the accuracies of predicted CDOM data from the SGLI algorithm comparing with *in-situ* data of ship observation.

Quality Control:

- *In-situ* data: time difference in ± 3 hours to SGLI observation
- SGLI data: average of the data passed the following conditions within a 5 by 5 pixel centered the in-situ point
 - 13 or more pixels which satisfies the following conditions: aerosol optical thickness < 0.5, solar zenith angle < 70 degrees, NWLR of all channels > 0, CLDAFFCTD flag isn't set.
 - 2. Median CV (coefficient of variation) computed from NWLR_380-565nm and Taua_865nm less than 0.05

Period of Validation:

• January 1, 2018 - December 31, 2020

Validation Results of Ocean IWPR Products: Colored Dissolved Organic Matter - CDOM

- Achieved Standard Accuracy
- Increased the number of validation points on coastal and sunglint areas because of the improvement of NWLR estimation.

Validation Result	Release Accuracy	Standard Accuracy	Target Accuracy
[Ver. 1] -52~107% →[Ver. 2] -55~121%	-60%~+150%(offshore)	-60%~+150%	-50%~+100%

GCM JAA

Validation Results of Ocean IWPR Products: Total Suspended Matter - TSM

Major Updates of Algorithm:

• None of major updates

Validation Method:

Validated the accuracies of predicted TSM data from the SGLI algorithm comparing with *insitu* data of ship observation.

Quality Control:

- *In-situ* data: time difference in ± 3 hours to SGLI observation
- SGLI data: average of the data passed the following conditions within a 5 by 5 pixel centered the in-situ point
 - 13 or more pixels which satisfies the following conditions: aerosol optical thickness < 0.5, solar zenith angle < 70 degrees, NWLR of all channels > 0, CLDAFFCTD flag isn't set.
 - 2. Median CV (coefficient of variation) computed from NWLR_380-565nm and Taua_865nm less than 0.15

Period of Validation:

• January 1, 2018 - December 31, 2020

Validation Results of Ocean IWPR Products: Total Suspended Matter - TSM

Standard accuracy is achieved except when there are errors in in-situ data or when the TSM concentration is particularly high, as on the English Channel. (See appendix for details on quality control.)

Validation Result	Release Accuracy	Standard Accuracy	Target Accuracy
[Ver. 2] -70~232% →[Ver. 3] -63~171%	-60%~+150%(offshore)	-60%~+150%	-50%~+100%
•			

Validation Results of Ocean SST Products: Sea Surface Temperature - SST

Major Updates of Algorithm:

- Introduction of atmospheric optical thickness climatology to improve atmospheric correction.
- Cloud mask method:
 - 1. Improvements by introduction of 1.6 micron data and so on (Daytime) and
 - 2. Readjustment of thresholds for each quality level (Nighttime).
- Introduction of a preprocessing to reduce stripes and random noise in L1B data.

Validation Method:

SGLI SST Version 3 was validated by comparing SGLI SSTs with in-situ SSTs.

Quality Control:

- *In-situ* data: Moored and drifting buoys data provided by NOAA/iQuam (version 2.1). The data were screened based on the QC result of the iQuam. High qualified data (iquam flag = 0 and quality level = 5) were used for the validation.
- **SGLI data**: SGLI SST V3 of the 1-km spatial resolution with the quality assured as good or acceptable: which are used to calculate L3 statistics. An SGLI SST nearest to the center was chosen for each 1hr x 3km collocation window centered on each buoy data and compared with the centered buoy data.

Period of Validation:

• January 1, 2018 - December 31, 2019

Validation Results of Ocean SST Products: Sea Surface Temperature - SST

- The increased total number of valid pixels is due to the improved cloud masking.
- Cloud contaminations have been improved at night due to adjusted thresholds.

Improved cloud mask

Modified cloud masking has also improved cloud masks at and around SST fronts during the daytime.

Validation Result	Release Accuracy	Standard Accuracy	Target Accuracy
$0.4(V2) \rightarrow 0.4^{\circ}C$ (daytime) $0.7(V2) \rightarrow 0.4^{\circ}C$ (nighttime)	0.8°C(日中)	0.8°C	0.6°C

Achieved Target Accuracy

310

(Appendix) Validation Results of Ocean IWPR Products: Total Suspended Matter - TSM

■ TSM on the English Channel in spring are extremely high and rarely exceed 40 g/m3 on the sea around Japan.

68

M

\Box In this validation, *in-situ* data of TSM > 40g/m³ is removed.

(Appendix) Validation Results of Ocean IWPR Products: **Total Suspended Matter - TSM**

5 mi

136°30'E

136°45'E

137°E

経度

137°15'E

350

400

450

500

550

wavelength (nm)

600

650

700

Table 1:Comparison of estimated and in-situ values for TSM and Chl-a

	TSM (g/m ³)	Chl- <i>a</i> (mg/m ³)
in-situ	0.28	36.55
SGLI	7.11	15.85

Estimation error of R_{rs} (NWLR) is unlikely to be the cause of outlier of TSM estimate at the target point :

102

ΓSM [g/m³]

- \geq TSM estimation from in-situ Rrs at the TSM sampling point is far off (Figure B).
- R_{rs} at 490 nm and 565 nm, which are necessary for TSM estimation, are close to in-situ R_{rs} (Figure C).
- High possibility of measurement error in in-situ TSM :
 - TSM at the near stations on the \geq same day (Figure D) varied from 2 to 5 g/m3, but Chl-a was similar at 21 to 44 mg/m3.
 - TSM value is too small for Chl-a (Table 1)

Removed as an outlier in this validation 69

Ver.3 Cryosphere Products

Evaluation Summary

Product	Release threshold	Standard accuracy	Target accuracy	Status ^{*1}	Evaluation Methods
Snow and Ice covered area (incl. cloud detection)	10%	7%	5%	$\bigcirc \Rightarrow \bigcirc$	Comparison with other satellites data (e.g. MODIS, VIIRS, Sentinel-3).
Okhotsk sea-ice distribution	10%	5%	3%	$\bigcirc \Rightarrow \bigcirc$	Comparison with other satellites data (e.g. MODIS, VIIRS, Sensinel-3).
Snow and ice surface Temperature	5К	2К	1K	Ø	Comparison with in-situ observation (Automatic weather station thermal radiometer data) and other satellites data (e.g. MODIS, VIIRS Sentinel-3).
Snow grain sizeof shallow layer	100%	50%	30%	O	Comparison with in-situ data for the standard and target accuracy thresholds.

*1 Symbols denote as follows; O: the release threshold achieved, O: the standard accuracy achieved, 😒: the target accuracy achieved.

GCØ

Validation results of Cryosphere products – SICE/OKID

- Version 3 Major changes and validation details

C1AB/SICE - Snow and Ice cover area algorithm

- Revised cloud detection/surface classification training data set using Neural network machine learning method
- All training data were simulated by DISORT radiative transfer model

C1C/OKID - Okhotsk sea-ice distribution algorithm

- Revised cloud detection/surface classification training data set using Neural network machine learning method communalize with C1AB
- All training data were simulated by DISORT radiative transfer model

Validation data for the C1AB/ SICE

- Snow area: MOD10C2 Snow Cover Extent Product
- Sea ice area*: MOD29E1D Sea Ice Product

Validation data for the C1C/OKID

- Sea ice area* : MOD29E1D Sea Ice Product

*NSIDC defines sea ice exists in case of the ice fraction/ice concentration more than 15%.

- Snow and Ice cover extent product validation results using other satellite products

GCOM

73

GOM KA

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.2: 8.5 % (Mar. 2018 - Dec. 2019) Ver.3: 6.5 % (Mar. 2018 - Jun. 2021)	10 %	7 %	5 %

Accuracy improved and SICE product is achieved the standard accuracy

- Okhotsk sea-ice distribution product validation results using other satellite products

1. Validation period was expanded: 2 season to 4 season.

2. Surface classification was improved from visual evaluation compared with False color image.

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.2: 9.0 % (Feb. 2018 - Mar. 2018) Ver.3: 5.0 % (Feb. 2018 - May. 2021)	10 %	5 %	3 %

Accuracy improved and OKID product is achieved the standard accuracy

75

GOM KA

- Version 3 Major changes and validation details

SGSL - Snow grain size of shallow layer

- Revised snow grain size estimation algorithm using Neural network machine learning method
 - Revised the training data set (BRDF data set) using Neural-net: improved inversion accuracy

SIST - Snow and Ice surface temperature

Revised the emissivity table

SALB - Broadband blue sky Snow ALBedo

- Add the direct retrieval of broadband blue sky snow albedo product as a research product
- Snow albedo estimation using Neural network machine learning algorithm same as snow grain size

Validation data for the SGSL

- Field campaign carried out on the Greenland Ice Sheet East-GRIP site (Jul. 2018), Japan/Hokkaido Nakasatsunai site (Feb. 2020), and JARE observation data (2019) on the Antarctic Ice Sheet Dome Fuji Site
- Surface Specific Area (SSA) measured by IceCube and HISSGraS and converted to optical equivalent snow grain size
- All data match-up conditions are in 10 minutes and 250 meters from nearest point of satellites

Validation data for the SIST

- Ground surface temperature was converted from Longwave radiation Flux observation by Automatic weather station (PROMICE)
- All data match-up conditions are in 10 minutes and 250 meters from nearest point of satellites

Validation data for the SALB

- Surface albedo was calculated from Downward and Upward shortwave radiation flux observation by Automatic weather station (PROMICE)
- All data match-up conditions are in 10 minutes and 250 meters from nearest point of satellites

- Snow grain size of shallow layer product validation results using in-situ observation data

GCØM

76

GOM KA

Validation sites were added: around Dome Fuji site by JARE.

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.2: 34 % (Greenland and Japan) Ver.3: 50 % (Added the Antarctica)	100 %	50 %	30 %

Retrieval became stable on wide region and SGSL product achieved the standard accuracy

- Snow and Ice surface temperature product validation results using AWS observation data

Ver.3 sample image 2019.05.09 - 2019.05.24

GCØM-

77

Co

Validation period was expanded: 2 years to 3 years.

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.2: 2 K (GrIS: 2018 - 2019) Ver.3: 1.6 K (GrIS: 2018 - 2020)	5 K	2 К	1 K

Accuracy improved and SIST product achieved the standard accuracy

GCØM-(

78

GOM JAXA

Validation result	Release accuracy	Standard accuracy	Target accuracy
0.087 (13 %)	-	-	7 %

SALB product needs more in-situ data & quality control