

Ver.3 Cryosphere Products

Evaluation Summary

Product	Release threshold	Standard accuracy	Target accuracy	Status ^{*1}	Evaluation Methods
Snow and Ice covered area (incl. cloud detection)	10%	7%	5%	$\bigcirc \Rightarrow \bigcirc$	Comparison with other satellites data (e.g. MODIS, VIIRS, Sentinel-3).
Okhotsk sea-ice distribution	10%	5%	3%	$\bigcirc \Rightarrow \bigcirc$	Comparison with other satellites data (e.g. MODIS, VIIRS, Sensinel-3).
Snow and ice surface Temperature	5К	2К	1K	\bigcirc	Comparison with in-situ observation (Automatic weather station thermal radiometer data) and other satellites data (e.g. MODIS, VIIRS Sentinel-3).
Snow grain sizeof shallow layer	100%	50%	30%	O	Comparison with in-situ data for the standard and target accuracy thresholds.

*1 Symbols denote as follows; \bigcirc : the release threshold achieved, \bigcirc : the standard accuracy achieved, \checkmark : the target accuracy achieved.

GCØM-

Validation results of Cryosphere products – SICE/OKID

- Version 3 Major changes and validation details

C1AB/SICE - Snow and Ice cover area algorithm

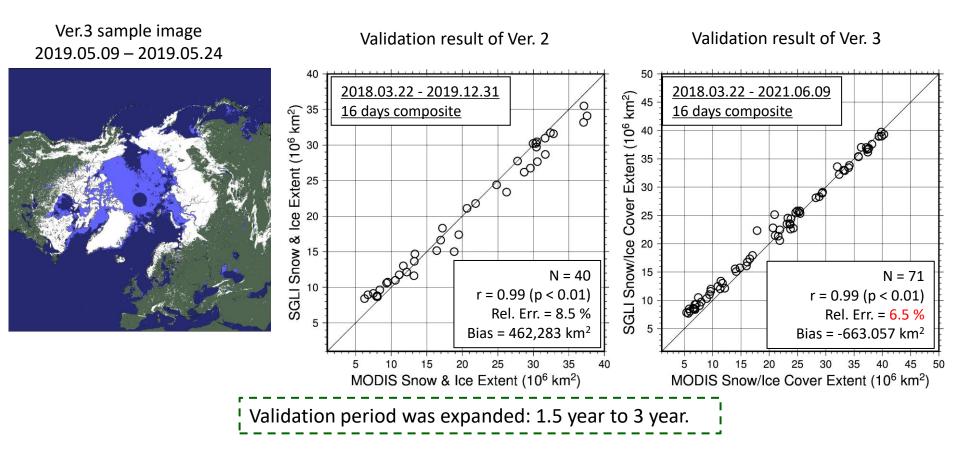
- Revised cloud detection/surface classification training data set using Neural network machine learning method
- All training data were simulated by DISORT radiative transfer model

C1C/OKID - Okhotsk sea-ice distribution algorithm

- Revised cloud detection/surface classification training data set using Neural network machine learning method communalize with C1AB
- All training data were simulated by DISORT radiative transfer model

Validation data for the C1AB/ SICE

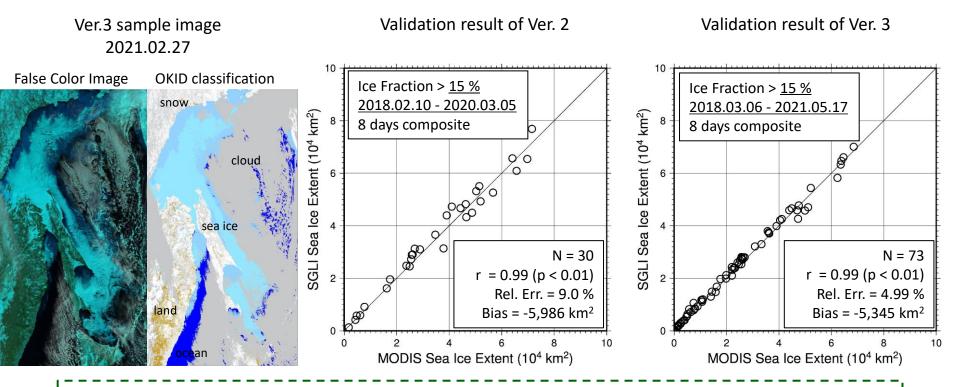
- Snow area: MOD10C2 Snow Cover Extent Product
- Sea ice area*: MOD29E1D Sea Ice Product


Validation data for the C1C/OKID

- Sea ice area* : MOD29E1D Sea Ice Product

*NSIDC defines sea ice exists in case of the ice fraction/ice concentration more than 15%.

- Snow and Ice cover extent product validation results using other satellite products


Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.2: 8.5 % (Mar. 2018 - Dec. 2019) Ver.3: 6.5 % (Mar. 2018 - Jun. 2021)	10 %	7 %	5 %

Accuracy improved and SICE product is achieved the standard accuracy

GCOM

- Okhotsk sea-ice distribution product validation results using other satellite products

1. Validation period was expanded: 2 season to 4 season.

2. Surface classification was improved from visual evaluation compared with False color image.

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.2: 9.0 % (Feb. 2018 - Mar. 2018) Ver.3: 5.0 % (Feb. 2018 - May. 2021)	10 %	5 %	3 %

Accuracy improved and OKID product is achieved the standard accuracy

- Version 3 Major changes and validation details

SGSL - Snow grain size of shallow layer

- Revised snow grain size estimation algorithm using Neural network machine learning method
 - Revised the training data set (BRDF data set) using Neural-net: improved inversion accuracy

SIST - Snow and Ice surface temperature

Revised the emissivity table

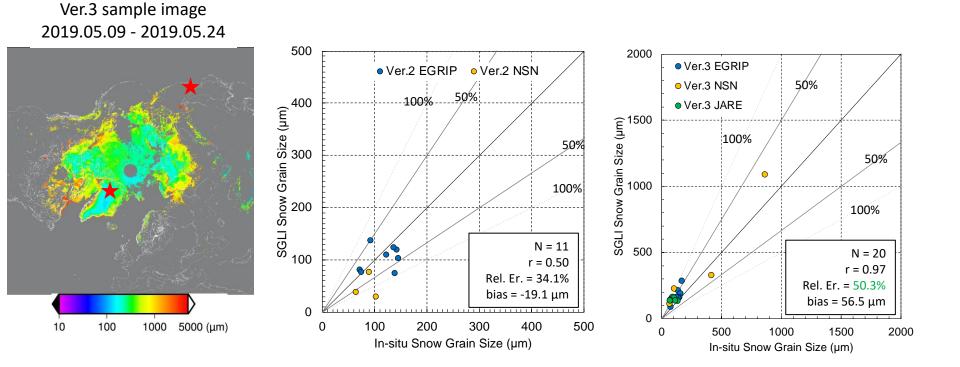
SALB - Broadband blue sky Snow ALBedo

- Add the direct retrieval of broadband blue sky snow albedo product as a research product
- Snow albedo estimation using Neural network machine learning algorithm same as snow grain size

Validation data for the SGSL

- Field campaign carried out on the Greenland Ice Sheet East-GRIP site (Jul. 2018), Japan/Hokkaido Nakasatsunai site (Feb. 2020), and JARE observation data (2019) on the Antarctic Ice Sheet Dome Fuji Site
- Surface Specific Area (SSA) measured by IceCube and HISSGraS and converted to optical equivalent snow grain size
- All data match-up conditions are in 10 minutes and 250 meters from nearest point of satellites

Validation data for the SIST


- Ground surface temperature was converted from Longwave radiation Flux observation by Automatic weather station (PROMICE)
- All data match-up conditions are in 10 minutes and 250 meters from nearest point of satellites

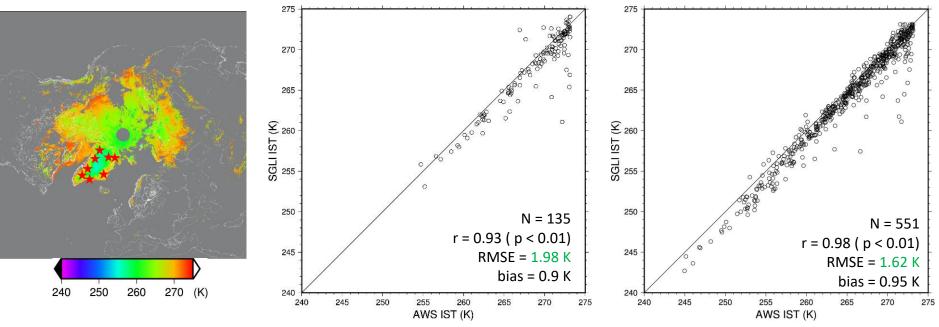
Validation data for the SALB

- Surface albedo was calculated from Downward and Upward shortwave radiation flux observation by Automatic weather station (PROMICE)
- All data match-up conditions are in 10 minutes and 250 meters from nearest point of satellites

- Snow grain size of shallow layer product validation results using in-situ observation data

Validation sites were added: around Dome Fuji site by JARE.

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.2: 34 % (Greenland and Japan) Ver.3: 50 % (Added the Antarctica)	100 %	50 %	30 %


Retrieval became stable on wide region and SGSL product achieved the standard accuracy

GCØM

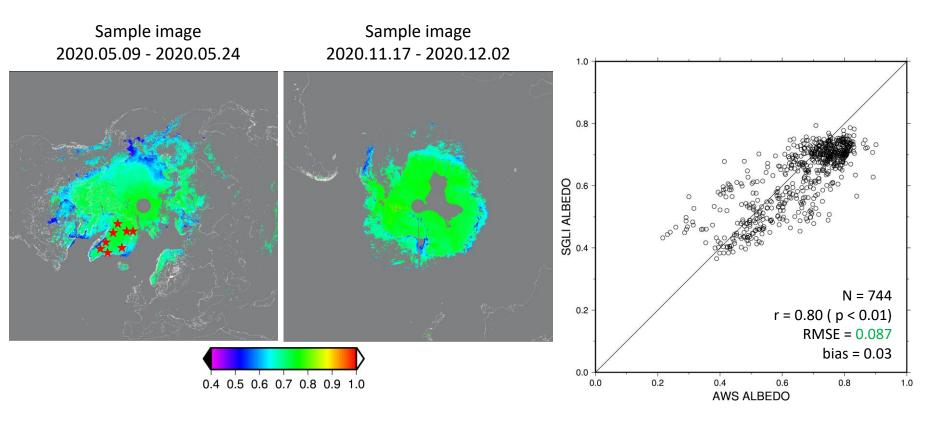
- Snow and Ice surface temperature product validation results using AWS observation data

Ver.3 sample image 2019.05.09 - 2019.05.24

Validation period was expanded: 2 years to 3 years.

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.2: 2 K (GrIS: 2018 - 2019) Ver.3: 1.6 K (GrIS: 2018 - 2020)	5 K	2 К	1 K

Accuracy improved and SIST product achieved the standard accuracy



 $(\mathbf{C}_{\mathcal{O}})$

8

GCØM-

GCØM-(

9

GOM JAXA

Validation result	Release accuracy	Standard accuracy	Target accuracy
0.087 (13 %)	-	-	7 %

SALB product needs more in-situ data & quality control