

Ver2. Atmosphere Products

Evaluation Summary

Product	Release threshold	Standard accuracy	Target accuracy	Status ^{*1}	Evaluation Methods
Cloud flag/Classification	10% (with whole-sky camera)	Incl. below cloud amount	Incl. below cloud amount	47	Comparison with in-situ observation (sky-camera images) for release threshold. Evaluations for standard and target accuracies were performed as the Classified cloud fraction products.
Classified cloud fraction	20% (on solar irradiance)	15% (on solar irradiance)	10% (on solar irradiance)	*	Comparison of SGLI-derived solar irradiance using cloud products including cloud flag, cloud fraction etc. with ground-measured solar irradiance.
Cloud top temp/height	1 K	3 K/2 km (top temp/height)	1.5 K/1 km (temp/height)	Ø	Evaluation was made as vi-cal. of SGLI TIR bands for the release threshold. In addition, comparison with other satellite data for evaluating the achievement of the standard accuracy.
Water cloud OT/effective radius	10%/30% (CloudOT/radius)	100% (as cloud liquid water)	50% / 20%	0	Comparison with other satellite (MODIS) data.
Ice cloud optical thickness	30%	70%	20%	0	Comparison with other satellite (MODIS) data.
Aerosol over the ocean	0.1 (Monthly τa_670,865)	0.1 (scene τa_670,865)	0.05 (scene τa_670,865)	0	Comparison with other satellite (MODIS) data.
Land aerosol by near ultra violet	0.15 (Monthly τa_380)	0.15 (scene τa_380)	0.1 (scene τa_380)	$\bigcirc \rightarrow \bigcirc$	Comparison with in-situ observation and other satellite (MODIS) data.
Aerosol by Polarization	0.15 (Monthlyτa_670, 865)	0.15 (scene τa_670,865)	0.1 (scene τa_670,865)	Ó	Comparison with in-situ observation and other satellite (MODIS) data.

*1 Symbols denote as follows; \bigcirc : the release threshold achieved, \bigcirc : the standard accuracy achieved, \precsim : the target accuracy achieved.

GCØM-C

GCOM

Atmosphere Product

- Aerosol over Land and Ocean with Near UV

- Changes from Ver. 1
- Aerosol retrieval by inputting model forecast of AHI as an initial value
- Simultaneous estimation of 3 variables with canonical correlation analysis (Optical thickness, Angstrom exponent, Single scattering albedo)

Using channels

- Land : VN01, VN02, VN03, VN05, VN08
- Ocean : VN10, SW01, SW03, SW04
- Ver. 2 algorithm

ARNP Validation methods

Validation Method:

• Aerosol over ocean:

Standard accuracy: RMS errors are evaluated comparing SGLI derived AOT with those from other satellite sensors and shipborne in-situ observations (AERONET/Maritime Aerosol Network) (scene by scene).

• Aerosol over land:

Standard accuracy: RMS errors are evaluated comparing SGLI derived AOT with those from other satellite sensors and sky-radiometer at ground observation network (Skynet and AERONET) (scene by scene).

Validation data and condition etc.:

The SGLI data within 10 km from the in-situ sites were used and averaged for comparison with the in-situ data.

Validation period:

(1) Land: Sky-radiometer

Source – Irie PI@Chiba univ. (SKYNET), Aoki PI@Toyama univ., JMA, AERONET

Period – March 2018, June 2018, Feb. 2018, Jan. 2020, Feb. 2020

(2) Ocean: Microtops on ships

Source – AERONET/Maritime Aerosol Network

Period – March 2018, June 2018, Feb. 2019

Validation Results

Aerosol over land with near UV (ARNP_land)

Standard accuracy is archived.

5

Validation Results

Aerosol over ocean with near UV (ARNP_ocean)

<u>AOT over ocean (Ver. 1)</u> Averaged SGLI within 10km vs. shipborne microtops at the same time <u>AOT over ocean (Ver. 2)</u> Averaged SGLI within 10km vs. shipborne microtops at the same time

It has potential to archive standard accuracy.

GOM KA

Validation Results Aerosol over land with near UV (Monthly ARNP_land)

Aerosol over ocean with near UV (Monthly ARNP_ocean)

The cloud contamination reduced over both land and ocean.

7

GOM JAXA

GCOM

Validation results of Aerosol by Polarization (1/2000000

- Algorithm Overview
 - Algorithm PI: Dr. Sonoyo Mukai (The Kyoto College of Graduate Studies for Informatics) Dr. Itaru Sano (Kindai Univ.)
 - Features:
 - Retrieval methods of aerosol properties based on POLDER research.
 - Improvements of the precision of aerosol properties by using polarization and near ultraviolet wavelength.
- Issues in V1
 - a. Large deviation of validation results
 - b. False detection of AOT in clear-sky area
 - c. Low AOT in dirty sky area
- V2 update
 - 1 Cloud screening using polarization bands(\leftarrow a)
 - 2 Masking snow cover area (see cloud-flag product) (\leftarrow b)
 - * Issue c will continue to be considered for the next version
- Validation data
 - In-situ: SKYNET, AERONET
 - Match-up:
 - distance±10km(ave.) / time±30min.
 - Period: Apr.1st to Dec. 26 2018

$GCTSGT_20190S0TD0TM_D0000_3MSG_A0TLF_1000$

GC1SG1_20190501D01M_D0000_3MSG_AOTLF_1000

Validation results of Aerosol by Polarization (2/2000-C

- Decreased in deviation and false detection of AOT in snow area at V2.
- Plan to consider the following for V3:
 - Re-examination of cloud screening threshold in high AOT region.
 - Detailed investigation of high AOT event cases. (air pollution, forest fires, etc.)
 - Re-examination of radiative transfer. (including LUT)

