

Ver2. Cryosphere Products

Evaluation Summary

Product	Release threshold	Standard accuracy	Target accuracy	Status ^{*1}	Evaluation Methods
Snow and Ice covered area (incl. cloud detection)	10%	7%	5%	0	Comparison with other satellites data (e.g. MODIS, VIIRS, Sentinel-3).
Okhotsk sea-ice distribution	10%	5%	3%	0	Comparison with other satellites data (e.g. MODIS, VIIRS, Sensinel-3).
Snow and ice surface Temperature	5K	2К	1K	\bigcirc	Comparison with in-situ observation (Automatic weather station thermal radiometer data) and other satellites data (e.g. MODIS, VIIRS Sentinel-3).
Snow grain size of shallow layer	100%	50%	30%	$\bigcirc \rightarrow \bigcirc$	Comparison with climatology (relationship between snow surface temperature and snow grain size) for the release accuracy threshold. In addition, comparison with in- situ data for the standard and target accuracy thresholds.

*1 Symbols denote as follows; \bigcirc : the release threshold achieved, \bigcirc : the standard accuracy achieved, \precsim : the target accuracy achieved.

GCOM-

- Version 2 Major changes and validation data details

Major Change for the C1AB - Snow and Ice cover area algorithm

- Revised cloud detection/surface classification algorithm from ordinary threshold method to Neural network machine learning method
- All training data were simulated by DISORT radiative transfer model

Major change for the C1C - Okhotsk sea-ice distribution algorithm

- Revised cloud detection/surface classification algorithm from ordinary threshold method to Neural network machine learning method partly.
- All training data using Neural network were simulated by DISORT radiative transfer model

Validation data for the C1AB/ SICE - Snow and Ice cover Extent product (snow/ice fraction > 15%*)

- Snow area: MOD10C2 Snow Cover Extent Product
- Sea ice area: MOD29E1D Sea Ice Product

Validation data for the C1C/OKID - Okhotsk sea-ice distribution product (sea ice fraction > 15%*)

- Sea ice area :MOD29E1D Sea Ice Product

*NSIDC defines sea ice exists in case of the ice fraction/ice concentration more than 15%.

- Snow and Ice cover extent product validation results using other satellite products

2. Composite period and valid snow/ice fraction were revised: 8 day to 16 days, 10% to 15%.

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.1: 9.4 % (Mar. 2018 - Aug. 2018) Ver.2: 8.5 % (Mar. 2018 - Dec. 2019)	10 %	7 %	5 %

Accuracy improved and SICE product is likely to achieve the standard accuracy

- Version 2 Major changes and validation data details

Major Change for the C1AB - Snow and Ice cover area algorithm

- Revised cloud detection/surface classification algorithm from ordinary threshold method to Neural network machine learning method
- All training data were simulated by DISORT radiative transfer model

Major change for the C1C - Okhotsk sea-ice distribution algorithm

- Revised cloud detection/surface classification algorithm from ordinary threshold method to Neural network machine learning method partly
- All training data using Neural network were simulated by DISORT radiative transfer model

Validation data for the C1AB/ SICE - Snow and Ice cover Extent product (snow/ice fraction > 15%*)

- Snow area: MOD10C2 Snow Cover Extent Product
- Sea ice area: MOD29E1D Sea Ice Product

Validation data for the C1C/OKID - Okhotsk sea-ice distribution product (sea ice fraction > 15%*)

- Sea ice area :MOD29E1D Sea Ice Product

*NSIDC defines sea ice exists in case of the ice fraction/ice concentration more than 15%.

- Okhotsk sea-ice distribution product validation results using other satellite products

1. Validation period was expanded: 0.5 year to 2 year.

2. Surface classification was improved from visual evaluation compared with False color image.

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.1: 9.1 % (Mar. 2018 - Aug. 2018) Ver.2: 9.0 % (Feb. 2018 - Mar. 2020)	10 %	5 %	3 %

OKID product needs more detail evaluation using high resolution satellite images

- Version 2 Major changes and validation data details

Major Change for the C2AB - Snow grain size of shallow layer

- Revised snow grain size estimation algorithm using Neural network machine learning method
 - Add the layer numbers of Neural-net: improved the processing speed
 - Revised the training data set (BRDF data set) using Neural-net: improved inversion accuracy

Major change for the C2AB - Snow and Ice surface temperature

- Revised the emissivity table

Validation data for the C2AB/ SGSL - Snow grain size of shallow layer

- Field campaign carried out on the Greenland Ice Sheet East-GRIP site (Jul. 2018) and Japan/Hokkaido Nakasatsunai site (Feb. 2020)
- Surface Specific Area (SSA) measured by IceCube and HISSGraS and converted to optical equivalent snow grain size
- All data match-up conditions are in 10 minutes and 250 meters from nearest point of satellites

Validation data for the C2AB/ SIST - Snow and Ice surface temperature

- Automatic Weather Station (AWS) installed by PROMICE (Fausto and van As, 2019) have measured the Upward/Downward Longwave Radiation Flux
- Ground surface temperature was converted from Longwave radiation Flux observation
- All data match-up conditions are in 10 minutes and 250 meters from nearest point of satellites

Fausto, R.S. and van As, D., (2019). Programme for monitoring of the Greenland ice sheet (PROMICE): Automatic weather station data. Version: v03, Dataset published via Geological Survey of Denmark and Greenland. DOI: https://doi.org/10.22008/promice/data/aws

Ver.2: 29 % (E-GRIP, QC: Ver.2)

GCOM-C

 $\mathbf{G} \mathbf{O} \mathbf{O}$

Snow grain size of shallow layer product validation results using in-situ observation data (only E-GRIP)

Quality control was improved by cloud detection algorithm revision of SICE. Snow grain size estimation accuracy improved by revision of C2 algorithm.

Ver.2 sample image

Ver.2: 34 % (wide-range, QC: Ver.2)

Adding the in-situ data measured in Nakasatsunai, Hokkaido, Japan

50 %

GCØM

Accuracy improved and SGSL product achieved the standard accuracy

100 %

30 %

- Snow and Ice surface temperature product validation results using AWS observation data (only E-GRIP)

GCØM

Co

Validation result	Release accuracy	Standard accuracy	Target accuracy
Ver.1: 1.5 K (EGRIP)	5 K	2 K	1 K
Ver.2: 1.4 K (EGRIP) & 2 K (GrIS, next page)			

Accuracy improved and SIST product achieved the standard accuracy

Snow and Ice surface temperature product validation results using AWS observation data (whole GrIS)

GCØM

