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1. Introduction  

This document describes algorithms that retrieve several Phytoplankton Functional Types (PFTs) 

as a satellite observation. PFTs may be defined in terms of a role of phytoplankton on 

biogeochemical cycles in the oceans or size of the phytoplankton cell which is an useful parameter in 

ecosystem analysis. In general, the agreement between functional- and taxonomic- or size-based 

classification, while far from universal, is adequate, therefore we use the term “phytoplankton 

functional types (PFTs)” to mean different groups of phytoplankton. This document provides (1) 

background of the algorithm (e.g. definition of PFTs), (2) in situ data used for the algorithm 

development, (3) algorithm equations, (4) operation procedure and (5) algorithm testing including 

uncertainty estimation.  

 

2. Background of the algorithm 

The PFT algorithms shown here are empirical algorithms. In the following, theoretical basis for 

‘empirical-based algorithm’ is described.  

Figure 1 shows in situ measurement of the total Chlorophyll-a concentration (TChla in [mg/m3]) 

against a percentage contribution of different PFTs [%] to TChla: a)Picoplankton, b) Nanoplankton, 

c) Microplankton, d) Pico-Eukaryote, e) Prymnesiophyte (Haptophyte), f) Diatom, g) Prokaryote, h) 

Green Algae, i) Dinoflagellates, j) Prochlorococcus sp. It is clear that there are well defined 

relationships between TChla and PFTs, which implies that a percentage contribution of PFTs to 

TChla can be estimated (or “inverted”) using TChla, if the relationships are quantified between them. 

TChla is a standard product of SGLI/ GCOM-C1, therefore it should be possible to derive the 

percentage contribution of PFTs to TChla. A practical issue in the estimation of PFTs by means of 

such approach is collection of in situ data to develop the empirical algorithms. It will be described in 

Section 3. 

 Relationships between TChla and PFTs observed in situ can be quantified by regression 

analysis. Non-linear regression was done by using Nelder-Mead method. However, the logistic 

function is applied here as a base function for the fitting, since ecological theory describes population 

dynamics by the equation; i.e. Y=A / [1-m * exp (-k*x)], where Y is a fractional contribution [0-1] of PFT 

to TChla, so that A=1, and m and k are fitting parameters. Finally, x is TChla if it is in linear or log 

space). 

 



 
Figure 1. Observed relationship between TChla and PFTs. 

 

 

 

3. In situ data set  

The PFT algorithms are developed based on existing in situ data by seeking relationships 

between TChla and PFTs. Thus, the algorithms are empirical algorithms. To obtain PFTs from in situ 

observation, the following in situ data sets of HPLC are used: NERC AMT (Aiken et al., 2009), 

JAMSTEC BEAGLE (Barlow et al., 2007), NASA NOMAD and SeaBASS (Werdell and Bailey, 

2005), University of Tokyo SEEDSII experiments (Suzuki et al., 2005), Fisheries Research Agency 

of Japan A-line cruise (Isada, 2009), Hokkaido University Oshoro-maru cruise (Howell et al., 

personal communication). These individual dataset was re-compiled to generate a global dataset 

which consists of 3966 data point after quality control. Fig. 2 shows spatial distribution of these 

dataset.  



Figure 2. Distribution of phytoplankton pigment data used in this study; blue dot: the NERC AMT 

cruise (Aiken et al., 2009), black triangle: the JAMSTEC BEAGLE cruise (Barlow et al., 2007), 

cyan diamond: the NASA NOMAD (Werdell and Bailey, 2005), magenta cross: the NASA SeaBASS, 

brown star: the SEEDS II cruise (Suzuki et al., 2005) + A-line stations (Isada et al., 2009), green 

square: the HU Oshoro-maru cruise. 

 

 

 

Quality control was undertaken by the procedure described by Hirata et al. 2008: A linear 

regression analysis of TChla vs accessory pigments was made to exclude ‘outlier’ data, which was 

defined as any data larger than 2x standard deviation around the regression line. This was repeated 

three times.  

Within the quality controlled dataset, 70% were sub-sampled to find relationships between 

TChla and PFTs, and 30% were reserved for algorithm testing. The 30% dataset was obtained in 

such a way that 30% of individual dataset was sub-sampled using a random selection to ensure that 

each individual dataset evenly contribute to the 30% dataset. 

 PFTs were classified based on Diagnostic Pigment Analysis (Viddussi et al., 2001) which 

defines a suite of Diagnostic Pigments (DP) for specific PFTs that can be quantified towards 



estimation of the relative abundance of a specific PFT (Table 1). The DPA was subsequently refined 

by Uitz et al. (2006) to scale DPs to TChla, permitting the application of DPA-based approaches to 

satellite-derived TChla. In addition, Hirata et al. (2008) used the refined DPA to separate 

pico-eukaryotes from nano-eukaryotes, and Brewin et al. (2010) developed a method to quantify the 

relationship, which is used in the present work. Here, DPA is further refined to account for ambiguity 

of the fucoxanthin (Fuco) signal. Fuco is defined as a DP for Diatoms by Vidussi et al. (2001). 

However, Fuco is also a precursor pigment of 19’-Hexanoyloxyfucoxanthin (Hex), the DP for 

prymnesiophytes (haptophytes), and can co-occur in this group. Fuco is also contained in the other 

heterokonts (e.g. chrysophytes, bolidophytes) and dinoflagellates, which are relatively abundant in 

coastal environments (Wright and Jeffrey, 2006). Thus, diatoms could be overestimated in DPA. 

Hirata et al. (2008) found a non-negligible proportion of Fuco within the oligotrophic gyres of the 

subtropical Atlantic, where small prokaryotes (predominantly Prochlorococcus sp. and 

Synechococcus sp.) and pico-eukaryotes (which can partly belong to the prymnesiophytes 

(haptophytes) so may also contain Hex) usually dominate the phytoplankton community (Zubkov et 

al., 1998; Tarran et al., 2006). In these oligotrophic waters, TChla is low (<0.25 mg m−3, Aiken et al., 

2009), therefore, it is more reasonable to assume that the background level of Fuco detected results 

from smaller prymnesiophytes (haptophytes) rather than diatoms which are more prevalent in 

eutrophic waters. Therefore, we calculated a baseline for the Fuco/Hex ratio, (Fuco/Hex)baseline, using 

Fuco and Hex in the Chl-a range less than 0.25 mg m−3 in the original data set (denoted as Fucooriginal 

and Hexoriginal, respectively). The proportion of Fuco as a diatom biomarker is then corrected so that 

Fucocorrected = Fucooriginal − (Fuco/Hex)baseline× Hexoriginal. 

The Fuco conversion is only significant in the lower Chl-a range (<0.5 mg m−3) and is 

negligible for higher Chl-a values. Using these HPLC pigment signals, PSCs and PFTs are defined 

and classified as in Table 1. 

Micro-, Nano- and Picophytoplakton are based on size-based classification, which may be 

defined, according to Sieburth et al. (1978), by microplankton >20 µm, nanoplankton 20–2 µm, 

picoplankton <2 µm in physical cell size. Although the DPA described above do not specify the size 

classes directly, outputs of the DPA are assumed to follow the size classification definition by 

Sieburth, since an agreement between taxonomic and size classification is generally accepted. 

However, a user must be aware this assumption in use of the present algorithms for micro-, nano- 

and picoplankton.   

 

 

 

 

 



Table 1. Diagnostic Pigments and PSCs/PFTs 
 

Size Classes/PFTs  Diagnostic Pigments          Estimation Formula  

 

Microplankton  (>20μm)*1 Fucoxanthin (Fuco), Peridinin (Perid)  1.41(Fuco+Perid) / ΣDP*1 

 Diatoms   Fuco       1.41Fuco / ΣDP*2 

 Dinoflagellates  Perid       1.41Perid / ΣDP*2 

Nanoplankton (2-20μm)*1 19’-Hexanoyloxyfucoxanthin(Hex)     (Xn*1.27Hex+1.01Chlb  

                +0.35But+0.60Allo)/ΣDP*3 

   Chlorophyll-b (Chlb) 

   Butanoyloxyfucoxanthin (But) 

   Alloxanthin (Allo) 

Green algae  Chlb       1.01Chlb / ΣDP*2 

Prymnesiophytes*4  Hex, But                                                

(Haptophytes) 

Picoplankton (0.2-2μm)*1 Zeaxanthin(Zea), Hex, Chlb                 (0.86Zea+Yp1.27Hex)/ΣDP*3 

Prokaryotes                  Zea     0.86Zea / ΣDP*2 

Pico-eukaryotes*5  Hex, Chlb 

Prochlorococcus sp.  Divinyl Chlorophyll-a (DVChla)  0.74DVChla / Chla 

 

*1Sieburth et al., (1978) 

*2ΣDP= 1.41Fuco+1.41Perid+1.27Hex+0.6Allo+0.35But+1.01Chlb+0.86Zea=Chla (Uitz et al, 2006) 

*3Xn indicates a proportion of nanoplankton contribution in Hex, respectively. Similarly Yp indicates a proportion of 

picoplankton in Hex, respectively (Brewin et al., 2010) 

*4 Given that contributions of Allo to nanoplankton were only a few percent in our data set, haptophytes were 

approximated to Nano minus Green Algae  

*5 Pico-eukaryotes can be determined from picoplankton minus prokaryotes (see also Fig. 2 caption)  

 
 

 

4. Algorithm Equations 

The PFT algorithms use the following equations to estimate nine PFTs (i.e. Microplankton, Diatom, 

Nanoplankton, Green Algae, Prymnesiophyte, Picoplankton, Prokaryote, Pico-Eukaryote, 

Prochlorococcus sp.). The algorithms return a fraction [0-1] of a specified PFT relative to TChla 

[mg/m3]. 

 



Microplankton = 1 / [ 0.9117+exp(-2.7330 *log10(TChla)  +  0.4003) ]          Eq. (1) 

Diatom = 1 / [ 1.3272 + exp(-3.9828 *log10(TChla) + 0.1953) ]           Eq. (2) 

Nanoplankton  = 1- Microplankton – Picoplankton            Eq. (3) 

Green Algae = (0.2490/TChla) * exp ( -1.2621 * ( log10(TChla)-0.5523 )2          Eq. (4) 

Prymnesiophyte ≓ Nano-Green Algae                        Eq. (5) 

Picoplankton =  -  (1 / [0.1529+exp(1.0306*log10(TChla) – 1.5576)])  

              + 1.8597 + 2.9954             Eq.(6) 

Prokaryotes = (0.0067/0.6154/TChla) * exp( -19.519 * (log10(TChla)+0.9643 )2 / 0.00672 ) 

     + 0.1027*[log10(TChla)]2  - 0.1189*log10(TChla) + 0.0626         Eq.(7) 

Pico-Eukaryote = Picoplankton – Prokaryote 

Prochlorococcus sp. = (0.0099/0.6808/TChla) * exp( -8.6276*(log10(TChla) + 0.9668)2 / 0.00992 ) 

   +0.0074*[log10(TChla)]2 -0.1621*log10(TChla) + 0.0436       Eq.(8) 

 

 

5. Operation Procedure 

The PFT algorithms assume that total TChla are obtained in prior to their implementation.  

Thus, it is important to note that (a) TChla must be obtained by any mean (e.g. GCOM-C1 

Chlorophyll-a algorithm) prior to implementation of the present PFT algorithms. Without TChla, 

PFTs cannot be estimated. Once TChla is prepared, the following PFTs must be estimated first: 

Microplankton, Diatom, Green Algae, Picoplankton, Prokaryote and Prochlorococcus sp (these 

PFTs can be estimated in any order). Secondly, Nanoplankton (=1-Mircoplankton-Picoplankton) 

and Pico-eukaryote (=Picoplankton-Prokaryote) can be derived. Finally, Prymnesiophyte can be 

estimated from Nanoplankton-GreenAlgae. Figure 3 visually summarizes the operation flow. 

 

 
Figure 3. Flow chart of PFTs estimation. A step estimation is necessary to derive all nine PFTs. 

 



 

6. Algorithm testing 

Figure 4 shows residual between PFTs derived from the algorithms and in situ HPLC data used 

for the development of the algorithms. Ideally, the residual is zero, however, variable residual is 

found over the TChla range as well as over the PFTs. This residual may be assumed to represent 

uncertainty of the present algorithms, given that in situ data of PFTs for all location and time 

period is unavailable. Table 2 summarizes the mean and maximum residual for the nine PFTs. 

 

 

Figure 4. Residual between PFTs derived from in situ HPLC data and its best fit curve. Note that 

Dinoflagellate algorithm is not a deliverable. 

 

 

Fig.5 shows PFTs derived from Eqs. 1-8 against another subset of NOMAD data (Werdell and Bailey, 

2005) which was not used for algorithm development. Statistics are summarized in Table 3. 

Picoplankton is retrieved with the regression slope 1.00, although some scatters are found. While 

there is more scatter in Prochlorococcus sp. than Pico assembles, the regression slopes for both 

phytoplankton types are similarly good (1.0 for Pico and 0.982 for Prochlorococcus). Prokaryotes 



and Pico-Eukaryotes have scatter (7.71%, 5.25%) and the regression slope is 0.864 and 0.801, 

respectively. Nanoplankton have relatively larger RMSE (8.55%) compared to other PFTs. However, 

Prymnesiophytes, which may be considered as nanoplankton fraction, has an increased RMSE and 

intercept (10.0 and -9.721, respectively) than Nanoplankton assembles. Microplankton and Diatoms 

show similar results. Note that Dinoflagellate algorithm is not a deliverable.  

Since the algorithms were developed based on the global climatology of the PFTs derived 

from in situ observations, a check is need to ensure whether the temporal variation of PFTs is also 

retrieved from the present algorithms. Figure 6 shows power spectra of three phytoplankton types 

(Micro, Nano and Pico) for different ocean basins derived from the existing satellite data as an 

example. One of the significant variability of phytoplankton dynamics is known as seasonality (i.e. 

365 day cycle). The seasonality is clearly seen in all basins under the present algorithms. 

 

Table 2. Mean and Maximum Residual  

PFTs Residual [%] Maximum Residual [%] 

Microplankton 6.7 31.1 

Diatom 6.3 31.8 

Nanoplankton 7.6 27.6 

Green Algae 4.2 17.8 

Prymnesiophyte 8.4 29.5 

Picoplankton 6.1 23.8 

Prokaryote 7.1 25.2 

PicoEukaryote 4.6 16.6 

Prochlorococcus sp. 6.1 21.4 

 

Table 3. Statistical results of the PFT algorithms against in situ data  

 Slope Intercept RMSE 

Micro 1.109 1.073 8.28 

Diatom 1.115 1.732 7.98 

Nano 1.168 3.055 8.55 

Prymnesiophyte 1.218 -9.721 10.0 

Green Algae 0.809 2.035 4.71 

Pico 1.000 -8.093 7.12 

Pico-Eukaryotes 0.801 2.564 5.25 

Prokaryotes 0.864 3.712 7.71 

Prochlorococcus sp. 0.982 0.353 6.25 

 



 
Figure 5. Comparison between in situ PFTs and those derived from the present PFT algorithms. Note 

that in situ data used for the algorithm evaluation is a subset of the original data set, which was not 

used for algorithm development. 

 

 

Figure 6.  Power spectra for Pico, Nano and Microplankton for different ocean basins (NAT: North 

Atlantic, SAT: South Atlantic, NPC: North Pacific, SPC: South Pacific, IND: Indian Ocean, Glb: 

Global Oceans). 
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