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I. Introduction: 

Ocean ecosystems play a critical role in the Earth’s carbon (C) cycle through net primary 

production (NPP) processes that fix dissolved CO2 into organic matter in the well-lit, surface 

oceans, and C export into the deep ocean via the biological pump (Siegel et al., 2015). A major 

fraction of this C transported (export carbon) into the oceans’ interior is associated with 

allochthonous nitrogen inputs, primarily inorganic nitrate into the euphotic zone (Eppley and 

Peterson, 1979; Dugdale and Goering, 1967). In oceanic regions outside of coastal marginal 

zones, and away from the influence of terrestrial inputs, inorganic nitrate inputs from below the 

euphotic zone represent a very important source of new nitrogen. Hence, understanding the 

spatial and temporal variations of inorganic nitrate in the euphotic layer over basin and global 

scales is an important requirement for ocean biogeochemical process studies (Fasham et al., 

2001).  

Despite its importance, nitrate data obtainable by traditional shipboard techniques fall far 

short of the spatial and temporal scales required for global climate research. This is especially 

true for high latitude areas which continue to remain chronically under sampled, particularly in 

winter when shipboard expeditions are difficult to conduct. Yet high latitude regions are 

important sinks for atmospheric CO2
. Most observational and modeling studies of C export 

(Strass and Woods, 1991; Glover et al., 1994) rely on nitrate maps constructed using multi-year 

data sets such as that of the NOAA National Oceanographic Data Centre (NODC) Atlas (Garcia 

et al., 2010). For climate-change and ocean C cycling studies, when the purpose is to study 

interannual variations in C export, the utility of these climatological maps is rather limited.  

Satellites have been suggested as a useful alternative, but although they can provide 

frequent, large-scale, near surface views of several variables relevant to phytoplankton ecology 

such as incident radiation, chlorophyll a and sea surface temperature (SST), nitrate 

measurements from space have remained elusive as most nutrients including nitrate lack an 

electro-magnetic signal that can be exploited from space.  

This document presents the algorithm theoretical basis for deriving sea surface nitrate and 

nitrate based new production from satellite data.   
 

II. Sea surface nitrate algorithm 

There have been previous attempts to estimate seawater nitrate concentrations using proxies, 

one being temperature which bears a strong inverse relationship with N (Kamykowski and 

Zentara, 1986). This is because seawater temperature and nitrate concentrations are tightly 

coupled as major inputs of nutrients into the euphotic zone occur through the intrusion of colder, 

nitrate-rich waters from deeper depths. Although empirical algorithms based on SST and nitrate 

relationships have been in existence for quite a while (Chavez et al., 1996) their application over 

large temporal and spatial domains has been frustrated by the time and space varying nature of 

the relationship (Garside and Garside, 1995; Chavez et al., 1996). One reason for these 

variations is that SST-nitrate relationships, is that the algorithms do not account for changes in 

nitrate that arise from phytoplankton photosynthesis and growth (Goes et al., 1999; 2000;Silio-

Calzada et al., 2008; Hutahaean et al., 2010 ).  
We have shown previously (Goes et al., 1999; 2000), that if biologically mediated changes in 

the character of temperature-nitrate relationships are taken into account, remote sensing can be 

exploited to provide high-resolution maps of sea surface nitrate that are valid over much larger 



scales than previously possible. Chlorophyll a was chosen as a predictor biological variable, largely, 

because of its known relationship with sea surface nitrate in the euphotic zone, and its accessibility 

from space in conjunction with SST. In our earlier studies we used data from several cruises to the 

North Pacific Ocean, covering different water types and different seasons were used to develop a set 

of algorithms that could predict SSN from T and Chl a. 

 

The algorithms for nitrate take the general form as follows: 

 

Sea surface nitrate = f1(SST) – f2(Chl a) 

 

III. Nitrate-based new production algorithm 
 In Goes et al. (2000), we show how SSN maps could be exploited to estimate new 

production fueled by the supply of nitrate inputs during winter convective mixing in the subarctic 

Pacific Ocean. In high latitude regions this input of nutrients supports the largest fraction of new 

production occurring annually in the world’s major ocean basins (Strass and Woods, 1991; 

Glover et al., 1994). By estimating the drawdown of nitrate within the euphotic zone over the 

growth season, we showed that it was possible to obtain estimates of C export that compared 

well with traditional shipboard sediment trap C export flux measurements. Although these new 

production estimates represent a lower bound estimate for total global ocean export production 

(as it does not account for C export that could result from other new nitrogen inputs into the 

system such as from N2 fixation or aerosol dust inputs into the ocean etc.), they do provide a 

synoptic view of high-C export areas and regions where the dominant drivers are convective 

overturning and coastal upwelling. 

The algorithm for nitrate based new production, takes the following form 

Nitrate based new production  =[ED [NO3(0)- NO3(t)] * R]/t 

 

Where =ED [NO3(0)- NO3(t)] is the amount of nitrate drawn down from the euphotic zone over 

the growth season (for instance from the start of the spring bloom in March, to the end of the 

summer bloom in Sept. in the North Atlantic or North Pacific ) of phytoplankton and R is the 

factor for converting nitrogen into C units and t is the time interval over which nitrate drawdown 

is calculated.  
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