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Theoretical Description of the Euphotic Depth Algorithm 

 

1. Physics of the problem 

The euphotic depth z1% is defined as the depth z at which the photosynthetically available radiation 

(PAR) at the sea surface falls to 1% of that (i.e. PAR(z1%)= 0.01 PAR(z=0-), where 0- indicates “just 

below the sea surface”. The PAR is defined by PAR(z)=∫ E0(z, λ) dλ where 400 ≤ λ ≤ 700nm, and 

E0(z,λ) here represents the spectral scalar irradiance. PAR is attenuated with depth by: 

 

PAR(z)=PAR(z=0) exp(-∫ KPAR(z) ·dz) =PAR(z=0)exp(-KPAR ·z).      (1) 

 

KPAR is the depth average of the diffuse attenuation coefficient for PAR: 

KPAR =∫ KPAR(z) dz / ∫1dz = ∫ KPAR(z) dz / z 

 

and KPAR(z), which is a function of depth, is defined by: 

 

KPAR(z)= d(ln PAR(z)) / dz. 

 

From Eq. 1, we obtain 

 

z1%= -ln[PAR (z=z1%)/PAR(z=0)]/ ∫KPAR (z)dz = -ln(0.01) / KPAR        (2) 

Equation (2) indicates that z1% is found when KPAR  is known. Therefore, KPAR  is a key factor to 

estimate z1%. In the following section, a derivation of KPAR  (hence z1%) using a remote 

measurement of the radiance is shown. Essentially, the problem is composed of the four practical 

problems  (i) How a conventional approximation of KPAR can be corrected to represent the exact KPAR 

for a better estimation of z1%, (ii) How the spectrally-integrated quantity of KPAR is derived from a 

radiance measured remotely at a limited number of discrete wavelengths, (iii) How a depth average of 

KPAR is derived from KPAR at the surface which a remote sensor would detect, (iv) How KPAR at the 



surface can actually be derived from the remotely-sensed radiance. In the following, wavelength- and 

depth dependencies of the variables such as PAR and KPAR are omitted unless otherwise specified.  

  

2. Euphotic Depth Algorithm  

2.1 How the spectrally-integrated property of KPAR is derived from a limited numbers of discrete 

wavelengths? 

 

The diffuse attenuation coefficient for PAR (KPAR(λ,z)) is related to that of the spectral scalar irradiance 

K0(λ,z) via 
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where λ’ is a wavelength at whichE0(λ,z)=E0(λ',z) or PAR(z)=300 E0(λ’,z) is found. It shows that 

KPAR(z) can be calculated from K0(λ’z) for any z, once if λ’ is known.  

 

 
Fig. 1 The ratio of the spectral average of E0 to E0(λ) for the optical depth of 0 (left) and 5 (right). 

  



Fig. 1 shows the ratio between  and E0(λ,z) , derived from the radiative transfer 

simulation (Appendix A). The wavelength at which this ratio equals unity is found as λ’. At the sea 

surface (or the optical depth = 0),  is often close to  numerically at λ=560nm, so 

that λ’ is often 560nm, although λ’ does vary. The same holds true for the optical depth of 5.0 
(which is close to the optical depth of 4.6 and corresponds to z1%). However, uncertainty 
of the ratio at 560nm represented by the standard deviation (hence, uncertainty of λ’) is 
also large at the optical depth of 5.0. Rather, the uncertainty is small between 412-490nm 
at both the optical depth of 0.0 and 5.0 (and intermediate depths not shown), although 

the ratio is no longer unity (i.e. E0(λ,z) ≠ E0(λ,z) ). Over the water column considered 

(i.e. the optical depth 0 to 5.0), we found that the uncertainty is smallest at the 

wavelength of 490 nm, with E0(λ,z)/E0(λ,z)=0.835± 0.04  among SGLI Visible and 

Near Infrared Radiometer wavelengths (i.e. 412, 443, 490, 530, 565, 673, 763, 868nm). 

Although the ratio is not unity,  can be estimated by using 490nm more 

successfully than λ’ because, even if the ratio is 0.835, Eq. 4 can be re-written by 
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to reach the same conclusion as Eq. 4 that KPAR can be found directly from K0 for any z. At a glance, 

it then seems in Eq. 4’ that a choice of the wavelength doesn’t matter, as any value of the ratio between 

 and  will be canceled out in Eq. 4’ to always reach the same conclusion of 

KPAR(z)=K0(z). Given that λ’ is more or less variable and cannot be predicted easily (see Fig. 1), it is 

the stability and uncertainty of the ratio in various environmental conditions, not the ratio value itself, 

that affects the robustness of the replacement of  with , hence the validity of the 
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conclusion from Eq. 4(4’). Since a choice of wavelength affects the stability and uncertainty, the choice 

must carefully be made, unless one can always know and change in advance the variable wavelength 

that gives the best estimate of E0(λ,z)  and can find the wavelengths within a constrain of satellite 

sensor bands (i.e. a limited numbers of sensor wavelengths). From Eq. 4’, it is obvious that KPAR= 

K0(490) for z=0. 
 
2.1 How a depth average of KPAR is derived from KPAR at the surface? 

Fig. 2a shows vertical profiles of K0(490,z) (=KPAR(z), see Eq. 4’). Depending on the solar zenith 

angle θs, K0(490,z) varies with depth over 9%, even if the inherent optical properties of water body 

remain uniform over the water column. Thus, the approximation of K0(490,0)=K0(490,z) (hence, 

KPAR(0)= KPAR(z)) would lead to an inneligible error and must be corrected. 

 

 
Fig.2 K0 at 490 nm as a function of the optical depth (left) and the ratio of the depth average of 

K0(490) to the surface value of K0(490). 

 

Fig.2b shows the ratio between K0 (490, z)  andK0 (490, z)  at θs=0°, as a function of the 

optical properties (i.e. the absorption and the scattering coefficients) of bulk water. This result was 

similar to those at other θs, hence not shown. At realistic combinations of the absorption and scattering 

coefficients obtained from in situ measurements (NOMAD, Werdell et al. 2005), variability in the ratio 

is rather confined to a narrow range, namely 1.35±0.05, so that  

KPAR (z) = K0 (490, z) = (1.3± 0.05) ⋅K0 (490, 0) .    (5) 

 
The next step is to findK0 (490, 0)  from a remote measurement of the radiance. This may involve 



two scientific challenges in our strategy; (1)HowK0 (490, 0)  can be related to a routinely evaluated 

variable such as Kd(490,0) and (2)How Kd(490,0) can be found from the remotely-sensed radiance. 

To proceed, we define the ratio between the scalar irradiance E0 to the downward scalar 

irradiance Eod so that E0(λ,z)= ε1(λ,z) E0d(λ,z). We also define the average cosine for the downward 

radiance µd(λ,z)= Ed(λ,z)/E0d(λ,z). For simplicity, the wavelength- and depth dependency of these 

variables are omitted hereafter unless otherwise specified. As in the case for K0 (λ,z)  (and KPAR (λ,z), 

etc), the diffuse attenuation coefficient for ε1 and µd(λ,z) can be defined as Kε1(λ,z)=-(1/ε1(λ,z)) 

(dε1(λ,z)/dz) and Kµd (λ,z) =-(1/µd(λ,z)) (dµd (λ,z)/dz), respectively. As a result, we get 
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where ΔK(490,0)=Kε1 (490,0)- Kµd(490,0). At a glance, K0 (490,0) is linearly related to Kd (490,0) in 

this expression (although ΔK(490,0) may or may not be a function of Kd(490,0), which we do not 

know at this point). In order to find a relationship between Kd (490,0) and Kd, (490,0), Fig. 3 is plotted 

to show their ratio at z=0 as a function of the absorption and scattering coefficients of bulk water 

bodies for different solar angles θs =0°(Fig. 3b) and 50°(Fig. 3c). For realistic combinations of the 

absorption and scattering represented by in situ data, the ratio tends to lie on a contour of 0.80 and 

0.98, respectively. This suggests that K0(490,0) co-varies with Kd(490,0) for different water bodies 

(i.e. for different combination of the absorption and scattering), although K0 (490,0) ≠ Kd (490,0) 

necessarily. Also shown in Fig. 3c is the ratio at 490nm varying with θs, which can mathematically be 

formulated by 

 

K0 (490, 0) = Kd (490, 0)− Kd (490, 0) ⋅0.201⋅exp(−0.043θs )[ ]

= Kd (490, 0)+ΔK '(490, 0)
   (7) 

 



 
Fig. 3 The ratio of K0 (λ=490nm, z=0m) to Kd(490,0) for θs=0°(left) and θs=50°(center), and the 

solar dependency of the ratio (right). 

 

 

Comparison between Eqs. 6 and 7 suggests ΔK=ΔK’, so that ΔK can be expressed as a function of Kd:  

 
ΔK(490, 0) = ΔK '(490, 0) = Kd (490, 0) ⋅0.201⋅exp(−0.043θs ) .  (8) 

 

From Eq. 7, K0(490,0) can be expressed by only Kd(490) for a given θs (i.e. for a given 

observation condition). From the two-flow radiative transfer model (Hirata et al., 2008) for a 

homogenous water (i.e. inherent optical properties of water body is uniform over the water column), 

Kd(490,0) may be expressed by  

 

Kd (490, 0) =
c− rddbf
µd

−
rudbbR
µu

= ε2
a+ bb
µd

 

         (9) 

where the beam attenuation coefficient is denoted by c, the forward- and backscattering coefficients 

by bf and bb, respectively. The irradiance ratio is denoted by R, and the shape factors for the incident 

and reflected photon streams by rdd and rud, respectively. Finally, ε2=(c-rddbf)/(a+bb). Gordon (1989) 

showed from Monte Carlo radiative transfer simulation that ε2=1.035. For the clear sky condition in 

which the satellite remote sensing is feasible, photons just below the sea surface can be dominated by 

those from the direct Sun beam incident on the sea surface. In such a case µd  ≈ cos(θsw) where θsw and 

µu represent the zenith angle of the apparent solar zenith angle just below the sea surface and the 



average cosine for the upward riddance field, respectively. When cos(θsw) just below the sea surface 

is calculated from θs by 1− sin
2θs
n2

 using the Snell’s law, substitution of Eq. 9 in to 7 and the 

resultant equation into Eq. 5 gives: 

 

KPAR (z) =1.339 ⋅
1− 0.201⋅exp(−0.043⋅θs )

(1− sin2θs ) / n
2

[a(490)+ bb(490)]    (10)  

where the index of refraction n of seawater relative to air may be assumed 1.33. Eq. 10 indicates that 

KPAR is essentially proportional to a(490)+b(490), with the proportionality factor being a function of 

the solar zenith angle.  

 Substituting Eq. 10 into 2 finally gives z1%: 

  

  z1%=
k0 (1− sin2θs ) / n

2

[1− k1 exp(k2 ⋅θs )]
⋅

1
[a(490)+ bb(490)]

  (11) 

 

where k0=3.003, k1=0.201, k2=-0.043 in this study. Thus, z1% is obtained once a(490), bb(490) and θs 

is known. The former two (a(490) and bb(490)) are derived from the Inherent Optical Property 

algorithm (see ATBD for GCOM-C/SGLI  IOP algorithm, otherwise Smyth et al., 2006), while the 

last can be obtained once time (year, month,date) and observation location is known (the code is 

embedded within the GCOM-C/SGLI IOP algorithm). 

 

3. Algorithm evaluation 

Fig.4 shows an example of z1% derived from Eq. 9, using the NOMAD data set (Werdell and Bailey, 

2005) from which simultaneous measurements of in situ z1% and IOPs can be obtained. Also plotted 

are z1% derived from other models of Kd(λ) using z1% ~ 4.605 / Kd(490). Statistics are summarized in 

Table 1. Eq. 9 performs relatively well with RMSE=23.7m, although some scatters are found 

compared to other models. The regression slope of Eq. 9 (and of Lee et al, 2005) is relatively close to 

1.0, too. 

 

 



 
 

Fig. 4 Comparison between z1% observed(x) and modeled (y), as well as between Eq.9 (this study) 

and other models. 

 

 

 

 

Table 1. Statistical results of algorithm evaluation for ady against in situ data  

 Slope# Intercept# RMSE* 

Eq.9 (This study) 0.899 0.079 23.7 

Lee et al., 2005 0.901 0.117 20.3 

Mitchel & Kahru, 1998 1.205 -0.260 35.7 

Werdell, 2005 1.164 -0.106 55.6 

Morel et al., 2007A 0.672 0.487 24.7 

Morel et al., 2007B 0.759 0.413 18.0 

 

#log scale, *Liner scale 

5. Algorithm calibration 



When the statistical coefficients (the slope and intercept in Table 1) obtained for Eq. 9 is used to 

calibrate the algorithm, z1%calib=(z1%-0.079)/0.899. When the SGLI is actually launched and 

the algorithm uses the SGLI satellite signal, the calibration coefficients should be re-determined.  

 

References 

Hirata T. and N. Højerslev, Relationship between the irradiance reflectance and inherent optical 

properties of seawater, 113, C03030, doi:10.1029/2007JC004325,2008 

 

Mitchell, B.G., M. Kahru, Algorithms for SeaWiFS standard products developed with the CalCOFI 

bio-optical data set. Calif. Coop. Oceanic Fish. Invest. Rep. 39, 133-147, 1998 

 

Lee, Z.-P., K.-P. Du, and R. Arnone, A model for the diffuse attenuation coefficient of downwelling 

irradiance, J. Geophys. Res., 110, C02016, doi:10.1029/2004JC002275, 2005. 

 

Morel, A., Antoine, D., and B. Gentili, Bidirectional reflectance of oceanic waters: Accounting for 

Raman emission and varying particle phase function, Appl. Opt., 41, 6289-6306, 2002.  

 

Morel, A., Y., Huot, B., Gentili, P. J., Werdell, S. B. Hooker, B. A. Franz, Examining the consistency 

of products derived from various ocean colour sensors in open ocean (Case 1) waters in the perspective 

of a multi-sensor approach, Remote Sens. Environ., 111, 69-88, 2007. 

 

Smyth, T.J., G. F. Moore, T. Hirata, J. Aiken, Semianalytic model for the derivation of ocean color 

inherent optical properties: description, implementation, and performance assessment, Appl. Opt., 45, 

8116-8131, 2006. 

 

Werdell, J., http://oceancolor.gsfc.nasa.gov/REPROCESSING/SeaWiFS/R5.1/k490_update.html, 2005 

 

Werdell, P. J. and S. W. Bailey, An improved in situ data set for bio-optical algorithm development 

and ocean color satellite validation, Remote Sens. Environ., 98, 122-140, 2005  


