ATBD of BRF calculation from GCOM-C surface reflectance data (G4C)

Hiroshi Murakami, JAXA/EORC, Aug. 2021 (v3000: Main revisions of Ver. 3 is underlined)

1. Introduction

GCOM-C BRDF product (processing tag name is G4C) derive coefficients of the kernels of bi-directional reflectance function (BRF) are derived from N days of GCOM-C atmospheric corrected surface reflectance (RSRF product) (see Fig. 1).

- Kernel developed by Maignan et al., 2004 is used
- In the case of 8-days mean, N = 28 days (parameter), but the statistics are weighted to the target average period (see section 2 (2))
- Nadir reflectance is calculated at the solar angles of the observation latitude and the date

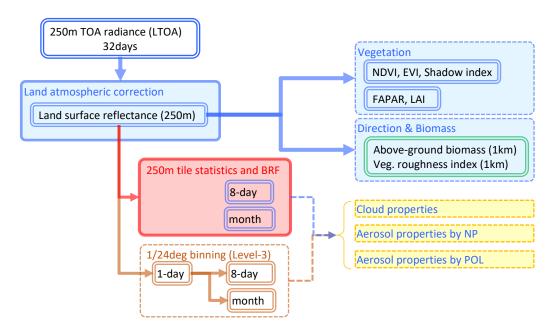


Fig. 1 Operation flow around the GCOM-C Land Atmospheric Correction The part marked by the red color indicates this process (G4C).

2. Method

(1) BRF kernel

Bi-directional reflectance is modeled by the following equation,

Reflectance = $c0 + c1 \cdot knl(1) + c2 \cdot knl(2)$

Coefficients c0, c1, and c2 is the target variables of the process. BRF kernel knl(1,2) is calculated using satellite zenith (saz), satellite azimuth (saa), and relative azimuth (rea= solar -satellite azimuth) angles (Maignan et al., 2004).

```
\begin{aligned} & \operatorname{rsaz} = \operatorname{saz} \cdot \operatorname{d2r} \\ & \operatorname{rsoz} = \operatorname{soz} \cdot \operatorname{d2r} \\ & \operatorname{rrea} = \left| \operatorname{rea} \cdot \operatorname{d2r} \right| \\ & \operatorname{csaz} = \cos(\operatorname{rsaz}) \\ & \operatorname{csoz} = \cos(\operatorname{rsaz}) \\ & \operatorname{csoz} = \cos(\operatorname{rsoz}) \\ & \operatorname{crea} = \cos(\operatorname{rrea}) \\ & \operatorname{tsaz} = \tan(\operatorname{rsaz}) \\ & \operatorname{tsoz} = \tan(\operatorname{rsaz}) \\ & \operatorname{tsoz} = \tan(\operatorname{rsoz}) \\ & \operatorname{calp} = \operatorname{csoz} \cdot \operatorname{csaz} + \sin(\operatorname{rsoz}) \cdot \sin(\operatorname{rsaz}) \cdot \operatorname{crea} \\ & \operatorname{alp} = \operatorname{acos}(\operatorname{calp}) \\ & \operatorname{dlt} = \operatorname{sqrt}(\operatorname{tsoz}^2 + \operatorname{tsaz}^2 - 2 \cdot \operatorname{tsoz} \cdot \operatorname{tsaz} \cdot \operatorname{crea}) \\ & \operatorname{knl}(1) = ((\operatorname{pi} - \operatorname{rrea}) \cdot \operatorname{crea} + \sin(\operatorname{rrea})) \cdot \operatorname{tsoz} \cdot \operatorname{tsaz}/(2 \cdot \operatorname{pi}) - (\operatorname{tsoz} + \operatorname{tsaz} + \operatorname{dlt})/\operatorname{pi} \\ & \operatorname{knl}(2) = (4./3./\operatorname{pi})/(\operatorname{csoz} + \operatorname{csaz}) \cdot ((\operatorname{pi}/2 - \operatorname{alp}) \cdot \operatorname{calp} + \sin(\operatorname{alp})) \cdot (1. + 1./(\operatorname{hspt} + \operatorname{alp} / (1.5 \cdot \operatorname{d2r}))) - 1./3. \end{aligned}
```

The parameter hspt is originally 1.0, however, it set to 5.0 to be stable regression (after Ver. 2).

(2) Temporal weighting for 8-day statistics

Data from day= d_0 -20 to day= d_0 +7 (d_0 is the start day of the target 8-day) are inputted to use enough number of samples for the regression. The data on a day are weighted for the regression.

 $wj(d) = 0.0004 / (0.0004 + (d/30.)^2 \cdot wk0)$, when d <0 wj(d) = 1.0, when d >=0,

where $d = day-d_0$, and $wk0=0.04 \cdot 0.04$ (corresponding to the regression error S=0.04). The weight of Level-2 data samples recovered from previous days (the number is N_{rcv}) are reduced by w_{rcv} as follows.

$$\begin{split} wj(d) &= wj(d) \cdot w_{rcv}, \\ where \; w_{rcv} &= (10-N_{used} \;) \; / \; N_{rcv} \text{, or } w_{rcv} = 0.5 \; \text{if } w_{rcv} {>} 0.5. \end{split}$$

(3) Regression to the Kernel

To avoid negative value, the coefficients, c0, c1, and c2 are calculated by minimize the

 $\begin{aligned} & \text{cost} = S^2 + w1 + w2 + w12 \\ & S^2 = \sum_d \{ (\text{Rs}_d - (\text{ c0} + \text{c1} \cdot \text{knl}(1)_d + \text{c2} \cdot \text{knl}(2)_d))^2 \cdot \text{wj}(d) \} \\ & w1 = \exp(-10.+\text{c1/uk1} \cdot 10.) \cdot \text{wk0} (\text{c1} \ge 0); \\ & w2 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w2 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/uk2} \cdot 10.) \cdot \text{wk0}(\text{c1} \ge 0); \\ & w1 = \exp(-10.+\text{c2/u$

where Rs_d is the level-2 surface reflectance of day=d, knl_d is the BRF kernel of day=d, uk1=0.1, and uk2=1.0.

- 3. Output parameters
 - (1) 8-bit QA_flag

cost,

See Table 1

(2) **_Ninput

Input data number.

(3) **_Nused

Used data number which does not include the recovered samples

Bit	Explanation
0	No data
1	Land (1) or water (0)
2	Insufficient sample number (N<4)
3	BRDF kernel regression error
4	Out of range
5	Spare
6	Spare
7	Spare

Table 1 QA_flag bit

(4) **_Date

Date identificator of RSRF/'//trim(inpm).

(5) ******_AVE

This is an average of RSRF variables (Polarization data), nadir normalized RSRF variables (thermal infrared data), or nadir normalized RSRF variables or 2nd-minimum (other variables or the ocean area).

(6) ******_c0, _c1, _c2

c0, c1, and c2 coefficients of the BRF kernel.

Note Rs_VN08P and Rs_PI01 are used for the c0-2 of VN08P ("RN08K" in the file name),

and Rs_VN11P and Rs_PI02 is used for the c0-2 of VN11P ("RN11K" in the file name). (7) **_RMS

Root mean square (RMS) of BRDF model regression is stored to refer the possible error of the reflectance. A simple RMS is stored in the ocean or areas of c1, c2 = 0 due to insufficient sample number.

Minimum of RSRF variables.

(9) ******_MAX

Maximum of RSRF variables.

In the standard processing, the following RSRF variables are processed: Rs_VN01~11, Rs_VN08P, Rs_VN11P, Rs_PI01~02, Rs_SW01~04, Tb_TI01~02, GEOV, GEOI, GEOP, and SWR The name tags of the output files are: RV01~11Q, RN08K, RN11K, RP01~02K', RS01~04K, RT01~02Q, GEOVQ, GEOIQ, GEOPK, and SWR_Q.

4. Reference

F. Maignan, F.-M. Breon, R. Lacaze, Bidirectional reflectance of Earth targets: Evaluation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot, Remote Sensing of Environment 90 (2004) 210–220.