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Derivation of the absorption coefficient of Colourd Dissolved Organic Matter (CDOM)  

1. Physics of the problem 

 

The IOP algorithm assumes that the remote sensing reflectance (Rrs) just above the sea surface 

(denoted by z=0+, where z represents a depth), or the water-leaving reflectance (ρ), is obtained in prior 

to its implementation.  

The Rrs for a wavelength λ is defined by 

 

Rrs(θv, φv, z=0+, θs, φs, λ) = Lw(θv, φv, z=0+, θs, φs, λ) / Ed(z=0+, θs, φs,λ)  (1) 

 

where Lw and Ed are the radiance and the downward plane irradiance at the observation angle (zenith 

angle θv, azimuth angle, φv) and the solar angle (zenith angle θs, azimuth angle φs). The water-leaving 

reflectance ρ can be obtained by ρ = π Rrs. Morel and Gentili (1993, 1996) showed that the Eq. (1) can 

be related to the absorption coefficient at and the backscattering coefficient of the bulk water bbt by 

 

Rrs (θv, φv, z=0+, θs, φs, λ)= R (W, θs, φs, λ) F(θv, φv, z=0-, θs, φs, λ) [bbt (z=0-, λ)/at(z=0-, λ)]  (2) 

 

where R is a transmittance from water to air and W denotes the wind speed. For convenience, all 

dependencies of the variables on illumination and observation geometries, depth, wavelength etc in 

Eq. 2 are omitted hereafter, unless otherwise specified. In addition, R x F will be denoted by F’ so that 

Eq.2 is simplified by  

 

Rrs = F’ [bbt/at].          (3) 

 

The absorption coefficient of the bulk seawater is decomposed into the absorption coefficients of 

optically active components. It is a common exercise to define those components as pure seawater 

(aw) , phytoplankton (aph), non-algal particles NAP (ad), and CDOM(ag), so that 

 

at=aw+aph+adg        (4) 



 

where 

 

adg=ad+ag (ad>0, ag>0)       (5) 

 

Among the components, aph and ad+ag(=adg), thus not ad and ag, can be derived from the SGLI/GCOM-

C1 IOP algorithm (see Smyth et al., 2006 as wel as ATBD for the IOP algorithm). Hence, we assume 

that adg are known in this document. A practical problem here is to decompose adg into ad and ag to 

retrieve ag. 

 

2. Dataset 

A global in situ dataset was used (Werdell and Bailey 2005) to derive ag from adg. Figure 1 shows the 

data distribution of the dataset. 

 

 

      Figure 1 NOMAD data distribution  

 

3. Algorithm  

The CDOM algorithm here takes the adg as an input. Thus, the algorithm decomposes adg into ag and 

ad in practice. Since the IOP algorithm retrieves adg relatively well at shorter wavelengths than other 

longer wavelengths (Smyth et al., 2006), the former wavelengths will be considered below to derive 

ag. Considering that (i) an optical separation of ag from adg is challenging as they often have a similar 

spectrum (IOCCG, 2018) and (ii) adg derived from the IOP model would in practice include some 

uncertainty anyway so that a fuzzy algorithm which can accepts input error may be desired , our choice 

is to derive ag from adg using an empirical (or statistical) relationship between ag and adg rather than 

   0o    60oE  120oE  180oW  120oW   60oW    0o  

  80oS 

  40oS 

   0o  

  40oN 

  80oN 



using an optical theory: the statistical coefficients can wrap up the above-mentioned uncertainty while 

bypassing the theoretical challenge. Figure 2 show the empirical relationship between ag and adg for 

412nm obtained from the in situ data. While the simple statistical model of ag=s*(adg)k (i.e. a linear 

regression model in log-log scale) shows a better r2, it also exceeds 1:1 line at smaller end of adg so 

that ag > adg (see a circle in Figure 2). When satellite-derived adg is even smaller than the smallest adg 

found in the present in situ dataset (which is likely to happen because a satellite data usually covers a 

larger spatial domain than in situ observation), a resultant ag derived from the fit would violate Eq. 5. 

Hence, we employ the other statistical model that never exceeds 1:1 line: 

 

𝑎"(411) =
(∗*+,(-..)

/01∗*+,(-..)
+ 𝐷      (6) 

 

where A=1.5625, B=1.7647, C=0.6058 and D=-0.0007218 which are determined by the least square 

fit. Although Eq. 6 reduces r2 statistics by 0.07 (i.e. data variance of 7% is less explained) when 

compared to the ag=s*(adg)k , also shows a better fit at the higher end of adg than g=s*(adg)k (squared 

area in Figure 2). 

 

Figure 2. In situ relationship between ag (412) and adg (411). 
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Note that Eq. 6 (with the coefficient values mentioned above) leads to ag=-0.0007218 < 0, when adg=0. 

Although this also does not make sense, the value of ag(412)=-0.0007218 is either lower than detection 

limit of an instrument or within an uncertainty of the measurement. 

 

Using the actual SGLI/GCOM-C satellite data, ag was derived and matched up with ag measured in 

situ (Table 1). Match up was made in such a way that satellite data do not deviate more than +/- 3 

hours from the in situ observation time. A 3x3 satellite pixel window is selected (Werdell and Bailey, 

2005) so that a pixel nearest to the exact latitude and longitude of an in situ measurement is located at 

the center of the window, and an average of ag within the window is calculated to represent the satellite 

ag. Then the satellite ag is compared to the ag measured in situ. Although statistical conclusion cannot 

be drawn due to a lack of a sufficient number of measurements, the differences between the satellite- 

and in situ ag (in linear scale) are between -89.2% and +98.3%. 

 

Table 1 
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