GCOM-C/SGLI Sea Surface Temperature (SST) ATBD

Yukio Kurihara

JAXA/EORC

Ver. 2.0: Jun. 2020*

1 Introduction

Sea surface temperature (SST) is an important geophysical parameter associated with heat flux at the air-sea interface. JAXA provides an SST product generated from the data obtained with the Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission -Climate (GCOM-C) satellite¹ (Fig. 1). This document presents the technical background of the SGLI SST product, which is available at JAXA's G-Portal². Data is outlined in Section 2, the algorithm is presented in Section 3, and its validation result is provided in Section 4. Lastly, currently recognized issues are presented in Section 5.

2 Data

2.1 SGLI data

SST is determined with the split-window data obtained by SGLI onboard GCOM-C (Tables 1 and 2). The spatial resolution of SGLI can be switched between 250 m and 1 km. SGLI is used to observe lands

²https://gportal.jaxa.jp/gpr/

Figure 1. 8-day composite of SGLI SST at daytime from 1 to 8 Oct. 2018.

^{*}Table A1 of change histories

 $^{^{1} \}rm https://suzaku.eorc.jaxa.jp/GCOM_C/index.html$

Launch 23 December 2017 from Tanegashima Space Center Launch Vehicle HII-A Weight 2,000 kg Power 4 kwDesign Life 5 years Orbit Sun-synchronous Altitude $798 \mathrm{km}$ Inclination 98.6 degrees Equator crossing local time (descending) 10:30 \pm 15 min.

Table 1 GCOM-C specifications

Ch.	λ	IFOV	Cloud	SST
0	[nm]	[m]	masking	determination
VN1	380	250 / 1000	no	no
VN2	412	250 / 1000	no	no
VN3	443	250 / 1000	no	no
VN4	490	250 / 1000	no	no
VN5	530	250 / 1000	no	no
VN6	565	250 / 1000	no	no
VN7	673.5	250 / 1000	no	no
VN8	673.5	250 / 1000	yes	no
VN9	763	250 / 1000	no	no
VN10	868.5	250 / 1000	no	no
VN11	868.5	250 / 1000	no	no
P1	670	1000	no	no
P2	865	1000	no	no
SW1	1050	1000	no	no
SW2	1380	1000	yes	no
SW3	1640	250 / 1000	yes	no
SW4	2210	1000	no	no
	$[\mu m]$			
T1	10.8	$250 \ / \ 500 \ / \ 1000$	yes	yes
T2	12.0	250 / 500 / 1000	yes	yes

Table 2 SGLI data for SST retrieval

and near-shore ocean areas with 250-m resolution and to observe open ocean with 1-km resolution. The swath width is 1,150 km for the VN and P channels and 1,400 km for the SW and T channels.

2.2 Ancillary data

The Merged Global Daily SST (MGDSST) is used in cloud detection at nighttime. MGDSST is objectively analyzed daily SST data provided by the Japan Meteorological Agency (JMA).

3 Algorithm

The algorithm is divided into two parts: the SST determination and the quality level (QL) decision. The first component determines SSTs for all pixels except for land. The second component assignes a QL to each determined SST.

3.1 SST determination

The SST algorithm is based on the quasi-physical method developed for Himawari-8 SST^3 [Kurihara et al., 2016, Yang et al., 2020]. The formulas are

$$I_s = I_{s0} + \mathbf{a} \left(\mathbf{I} - \mathbf{I}_0 \right), \tag{1}$$

³https://www.eorc.jaxa.jp/ptree/index.html

Table 3 Bin for initial data and coefficients

Coordinate	Parameter	Interval
1	T_1	1.0 K
2	$T_1 - T_2$	$0.1~{ m K}$

Table 4 Relative frequency

	abs(SGLI SST – buoy)		
	< 0.5	< 4.0	≥ 4.0
Clear	0.84	0.15	0.01
Cloudy	0.24	0.25	0.51
Unknown	_	_	-

$$T_b = \frac{hc}{K\lambda_1} \cdot \frac{1}{\ln\left(\frac{2hc^2}{\lambda_1^5 I_s} + 1\right)},\tag{2}$$

and

$$T_s = \sum_{k=0}^n c_k T_b^{\ k}.\tag{3}$$

Here, I_s is the sea surface blackbody radiance at T1 and the subscript 0 denotes the initial value. I is the vector of the radiance observed at T1 and T2 and **a** is the coefficient vector. Eq. (2) is the inverse of the Planck function. Here, λ_1 denotes the central wavelength of T1. Eq. (2) converts the radiance to the blackbody temperature. In the conversion, the radiance is assumed to be the monochromatic. Eq. (3) translates T_b to SST (denoted by T_s), allowing for the Relative Sensor Response (RSR) of T1 into account.

The initial values and coefficients were generated for each bin (Table 3) for each satellite zenith angle, at 10° intervals using numerically simulated SGLI data. The simulation was made by performing the Radiative Transfer for TOVS (RTTOV) 10.2 RTTOV [Saunders et al., 2012] on numerical weather prediction (NWP) data. RTTOV is a radiative transfer model developed at the Numerical Weather Prediction Satellite Application Facility (NWP SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The NWP data was provided by JMA.

3.2 Quality level

The quality level (QL) is decided for each determined SST in the two steps shown in Fig. 2. In the first step, threshold tests classify each SST into a clear, cloudy, or unknown class. Table 4 shows the relative frequencies of the absolute difference (SGLI-buoy) for each clear, cloudy, and unknown class. Then, QL is decided for each SST based on the first-step results and the cloud probability. QL is described in the 10-14th bits of the QA flag (Table 5).

3.2.1 Smoothness test

The smoothness test divides the determined SST fields into coarse or smooth cells based on the spatial uniformity of the SSTs.

3.2.2 SST front test

The front test examines all SSTs in coarse cells. Whether an SST is a part of a front or not is based on the SST gradient determined using SSTs in the 3×3 -pixel square centered at the target SST. An SST recognized as part of a front is reorganized as part of a smooth cell.

Figure 2. QL decision flow

Tat	ble	5
$\mathbf{Q}\mathbf{A}$	fla	ıg

Bit	Description	Level-3 mask [*]
0	Invalid data	1
1	Land	1
2	Rejected by QC	1
3	Retrieval error	1
4	Invalid data (TIR1)	1
5	Invalid data (TIR2)	1
6	reserved	
7	reserved	
8	1: daytime, 0: nighttime or no visible data	
9	Near Land	1
10	Cloudy	1
11	Unknown clear/cloudy	1
12	Possibly cloudy	1
13	Acceptable	
14	Good	
15	reserved	

*) The level-3 mask denotes the bits which the level-3 statistics processing refers to. Data will be used for the level-3 statistics if all of the bits are zero.

Figure 3. Relative frequency of the differences between SGLI and buoy data (SGLI-buoy). Statistics are calculated using the SGLI SSTs (QL=good) for 2019. The collocation window size is 1 hr \times 3 km. rmsd: the root mean square difference, std: the standard deviation, rstd: the robust standard deviation, n: the total number of match-ups, outlier: the total number of the match-ups, s.t. |SGLI - buoy| > 4 K, and clear% : the ratio of the match-ups (QL=good) to all match-ups. Note that statistics were calculated for all match-ups including outliers.

3.2.3 Coast test

The coast test was introduced in SGLI SST V.2. The test is performed on the data near land. The data is organized as a part of a smooth cell if a coastline is detected in the SGLI data (SW3 or T1) for the 3×3 -pixel square centered on the data.

3.2.4 Initial cloud probability test

Each smooth cell is subjected to an initial test that decides whether the cell is clear or cloudy, based on the cloud probability calculated for each SST in the cell. The cell is classified as clear if the cloud probability is lower than 0.3 for over 10 % of SSTs in the cell, otherwise is is classified as cloudy. Cloud probability is calculated by using VN8 and SW2 for daytime and SGLI- and MGD- SSTs for nighttime. The cloud probability calculation is based on the Bayesian inference method. [e.g. Merchant et al., 2005]. The probability density functions (PDFs) are generated using the statistics derived from comparisons of SGLI SST and buoy data. The condition of the data, whether clear, cloudy, or mixed, depends on the difference between the collocated SGLI SST and buoy data.

3.2.5 QL decision

A QL is decided for each SST based on the cloud probability calculated with the prior probability given depending on the initial classification result into account. The prior cloud probability is determined by the relative frequencies shown in Table 4. Different thresholds are given to each initial class for the determination of QL.

4 Validation

Figs. 3 and 4 show the statistics for SGLI SSTs for 2018 and 2019. The statistics were calculated by comparing the drifting and moored buoys data with SGLI SSTs having good QLs. Buoy data were downloaded from the *in-situ* SST quality monitor (*i*Quam)⁴ of the NOAA [Xu and Ignatov, 2014]. Each buoy data was compared with the nearest SGLI SST within a spatio-temporal window of 3 km×1 hr, centered on the buoy.

 $^{{}^{4}} https://www.star.nesdis.noaa.gov/socd/sst/iquam/index.html$

5 Issues

Following issues are recognized and waiting to be improved in the future.

- 1. Negative biases possibly dominate at SSTs above 300 K because of lower sensitivity to atmospheric water vapor.
- 2. Unstable accuracy of SST front detection possibly generates false clouds at and around SST fronts.
- 3. Because of insufficient information, cloud contamination can be conspicuous at nighttime.
- 4. Because of contamination of land, unnatural SSTs may be calculated along land/water boundaries.

References

- Kurihara, Y., Murakami, H., and Kachi, M. (2016). Sea surface temperature from the new japanese geostationary meteorological himawari-8 satellite. <u>Geophysical Research Letters</u>, pages n/a–n/a. 2015GL067159.
- Merchant, C. J., Harris, A. R., Maturi, E., and Maccallum, S. (2005). Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval. <u>Quarterly</u> Journal of the Royal Meteorological Society, 131(611):2735–2755.
- Saunders, R., Hocking, J., Rayer, P., Matricardi, M., Geer, A., Bormann, N., Brunel, P., Karbou, F., and Aires, F. (2012). Rttov-10 science and validation report. <u>EUMETSAT, NWPSAT-MO-TV-023</u>, page 31.
- Xu, F. and Ignatov, A. (2014). In situ sst quality monitor (iQuam). <u>J. Atmos. Oceanic Technol.</u>, 31(1):164–180.
- Yang, M., Guan, L., Beggs, H., Morgan, N., Kurihara, Y., and Kachi, M. (2020). Comparison of himawari-8 ahi sst with shipboard skin sst measurements in the australian region. <u>Remote Sensing</u>, 12(8).

Tabl	e A1
Change	History

Version	Date	Description
1.0	Oct. 2018	
2.0	Jun. 2020	Cloud masking was improved for coastal areas and inland water. Fig.
		2 (cloud masking flow) was modified along with a change to the cloud
		masking algorithm. Fig. 3 was updated. Fig. 4 was replaced with a
		time-series chart of bias and RMSD. Tables 3 (definition of LUT) and 4
		(relative frequency of clear/cloudy) were modified. Table 5 (thresholds
		for QL) was removed. Table 6 (QA flag) was modified and renamed
		Table 5 (Table A2 for track changes). Substantial changes were made to
		descriptions including notations in Eq. (1).

Table A2 QA flag (track changes)