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1 Introduction

1.1 Scope of the project

To create GCOM-C1/SGLI snow/ice products we have developed algorithms for cloud mask
and surface classification, snow grain size retrieval, and surface temperature retrievals. These
algorithms are based on the work we did for ADEOS-II/GLI (Stamnes et al., 2007; Aoki et
al., 20017; Hori et al., 2007), but we used the new SGLI channels, upgraded the surface clas-
sification algorithm, and improved the accuracy of the retrieved snow grain size and aerosol
properties as well as the surface temperature. These improvements have been accomplished
by using a linearized radiative transfer model (RTM) for the coupled atmosphere-snow sys-
tem in conjunction with a 2-layer snow model to allow for simultaneous retrieval of snow and
aerosol properties, and by using the response functions of the SGLI IR channels and updated
sounding data for the temperature retrieval. To test the performance of these algorithms
and thereby obtain further improvement, we proposed to (i) upgrade the quality and accu-
racy of our cloud mask algorithm over snow/ice cover area, (ii) upgrade and test our surface
classification algorithm over mixed snow/forest areas, (iii) develop and test algorithms for
direct retrieval of snow/sea ice albedo, (iv) explore the potential for improved snow retrieval
by assuming non-spherical snow grains, (v) use the direct albedo retrieval method to assess
the quality of albedo estimates derived from inferred snow parameters, and (vi) explore the
merits of using polarization channels to improve the aerosol retrieval to the extent available
time and resources permit.

Figure 1 and Table 1 provide a summary of our products and the research schedule for
each of our product, respectively.

1.2 Major objectives

The major objectives of our work are to:

1. Develop an improved cloud mask algorithm over snow/ice covered areas that is opti-
mized for high latitude and high surface elevation areas.

2. Develop an improved surface classification algorithm with improved snow/sea ice,
snow/forest classification.

3. Develop and test algorithms for direct retrieval of snow/sea ice albedo.

4. Explore the potential for improved snow retrieval by assuming non-spherical snow
grains.

5. Use the direct albedo retrieval method to assess the quality of albedo estimates derived
from infrared snow parameters.

6. Explore the merits of using polarization channels to improve the aerosol retrieval to
the extent available time and resources permit.
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1.3 Main goals and our work in JPY2015
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Figure 1: Schematic illustration of our products and the flow of the retrieval process. Blue
and red boxes are the standard and research products, respectively.

1.3 Main goals and our work in JPY2015

The main goals and our work in JPY2015 can be summarized as follows:

• To test and validate our new C1 cloud mask algorithm for snow covered land areas;
(see Section 2.1.2);

• To test and improve the C1 surface classification algorithm over Arctic ocean for sea-ice
area by using MODIS images (see Section 2.1.3);

• To test and validate the implementation of C1 cloud mask algorithm to SGLI sensor
(see Section 2.1.5);

• To implement Voronoi particle snow model into the SGLI snow retrieval code (see
Section 2.2.1 about snow model and its phase function);

• To compare the retrieved snow grain size from both spherical and non-spherical particle
snow models using MODIS data (see Section 3.2.2);

• To update snow/ice surface temperature retrieval based on the new SGLI channels
response function (see Section 2.3).
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1.4 Overview of our work from JPY2013 to JPY2015

• To explore the potential of using SGLI polarization channels to improve aerosol re-
trieval over snow (See Section 2.4).

The research schedule for these tasks are listed in Table 1.

Table 1: Our products for snow and ice classification shown in Fig. 1.

No. item Research Schedule

1 Upgrade cloud mask over snow/ice covered areas Aug. 2013 - Mar. 2014
2 Upgrade surface classification Aug. 2014 - Mar. 2015
3 Develop sea ice surface direct albedo Apr. 2014 - Mar. 2015
4 Use direct albedo to assess the quality of snow parameters retrieval Aug. 2013 - Mar. 2016
5 Explore non-spherical snow grains retrieval Apr. 2014 - Mar. 2016
6 Explore SGLI polarization channels to improve the aerosol retrieval Apr. 2014 - Mar. 2016

1.4 Overview of our work from JPY2013 to JPY2015

In this 3-year project, we upgraded and validated our cloud mark algorithm and surface
classification algorithm; developed a sea-ice surface direct albedo algorithm; improved the
snow grain size retrieval algorithm by using a non-spherical Voronoi particle model instead
of the spherical particle model; and explored the potential for improving the aerosol retrieval
by using SGLI polarization channels. An overview of the completed tasks are as follows:

• Upgrade of the cloud mask over snow/ice area. A new set of tables with dynamic
thresholds was established to improve the quality of the cloud detection. It includes
the consideration of solar/viewing geometry, atmospheric vertical structure, and sur-
face elevation. This new algorithm has be applied to MODIS data, and validated by
comparison with CALIPSO overpasses. Although SGLI has fewer thermal channels
than MODIS, the new algorithm performs better than the MODIS MYD35 product
[Chen et al., 2014].

• Upgrade of the cloud mask over land, desert, and snow mixed with vegetation areas.
Based on the CALIPSO and MODIS products, we generate a neural network table
to improve the quality of the cloud mask over such areas. This unique method is
expected to imrpove the cloud mask, specially in the winter season and over desert
areas. Comparisons with MODIS and CALIPSO show a significant improvement over
our previous algorithm. The performance in the winter season is much better than
that of the MODIS products.

• The sea-ice coverage detection has been updated too, but further validation is needed.
We are searching for measurements that can be used for this propose.

• A sea-ice model has been implemented in our radiative transfer model. Based on it, we
developed a new algorithm to retrieve the direct sea-ice surface albedo. This product
is similar to our direct snow albedo algorithm. The albedo will be directly retrieved
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from the satellite radiances. Applications to real data retrieval and validation will be
needed in the future.

• Comparisons between snow direct albedo and indirect albedo, can be used to assess
the quality of retrieved snow parameters. Since the quality of the cloud mask and the
surface classification has been greatly improved, we now find the direct and indirect
albedo values to be very close. This method can remove pixels with large bias in the
snow retrieval.

• In order to verify the snow model used in snow grain size retrieval, we compared the
modeled snow BRDF with measurements obtained by the NASA Cloud Absorption
Radiometer (CAR) deployed by aircraft over Elson Lagoon, Barrow, Alaska, on April
7, 2008. These comparisons show that non-spherical Voronoi particles provides better
agreement between modeled and measured snow BRD than a spheric particle model.
The current Voronoi particle model still leaves room for improvement, which will be
pursued in our work over the next three years. The new non-spherical Voronoi particle
snow model has been implemented into the snow grain size retrieval code. Preliminary
result are presented in this report.

• We did a first sensitivity study using the polarization channels. The results show
that the polarized reflectance provides an opportunity to distinguish aerosol optical
thickness from snow impurity. The design of the SGLI polarized sensor helps make
this distinction possible, because the scattering angles are in the forward direction.

We have completed the 3-year RA4 project. The cloud mask algorithm C1 and the snow
retrieval algorithm C2 have been greatly improved and validated. For the next 3 years of
the RA6 project, we will focus on further validation of these two algorithms using MODIS
data and the new SGLI data. Also, we will improve the non-spherical particle snow model
and continue exploring the merit of using SGLI polarization channels and multiple-angle
measurements to improve aerosol retrievals over snow.

2 Theoretical Description of the Algorithms

2.1 C1: Cloud mask and surface classification

2.1.1 Identifying snow/ice fields: the NDSI test

The processing flow of the C1 algorithm starts with a Normalized Difference Snow Index
(NDSI) test. The NDSI method has a long history and has been extensively utilized for
cloud screening and detection of snow/ice covered areas [Hall et al., 1995, 1996, 2001]. The
NDSI is defined as a normalized difference between the reflectance in two bands:

NDSI =
RVIS −RSWIR

RVIS +RSWIR

(1)

where RVIS is the observed reflectance of a channel in the visible spectral range and RSWIR

is the observed reflectance of a channel in the shortwave infrared spectral range. For the
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2.1 C1: Cloud mask and surface classification

MODIS instrument RVIS is selected to be band 4 (0.55 µm) and RSWIR to be band 6 (1.64
µm, Terra) or band 7 (2.13 µm, Aqua). By choosing an appropriate threshold (NDSI ≥ 0.4
as proposed by Hall et al. [1995]), the NDSI method can effectively identify snow/ice covered
areas from other surface types as shown by Ackerman et al. [1998] and Salomonson & Appel
[2004, 2006]. It can also be used to separate clouds (especially water clouds) from snow/ice
surfaces. In the C1 algorithm we apply the the NDSI method of Hall et al. [2001] because
we have found it to be very effective in identifying possible snow/ice covered areas including
partially snow-covered areas (snow mixed with vegetation). However, we have also found,
as discussed by Hutchison et al. [2013], that the NDSI method alone cannot completely
separate clouds from snow, because some clouds, especially thin ice clouds and overlapping
ice and water clouds, have NDSI signatures very similar to those of snow and ice. Therefore,
in our C1 algorithm the NDSI method is used as a first step to identify possible snow/ice
covered areas for which more detailed cloud mask procedures must be applied for correct
cloud identification. A flowchart of the algorithm is provided in Figure 2.
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Figure 2: Flow chart of the C1 cloud mask algorithm over snow/ice surfaces.

2.1.2 Cloud tests over snow-covered land

The use of SWIR tests to separate clouds from snow has been discussed in some detail by
Miller & Lee [2005], who used a combination of VIS, SWIR and 1.38 µm thresholds with a
simple solar zenith angle correction. Trepte et al. [2002] used the MODIS 1.64 µm reflectance
as well as the reflectance ratio between the 1.64 µm and the 0.65 µm channels to distinguish
clouds from snow in polar regions. We tried to use a single SWIR threshold (2.13 µm) first
to distinguish clouds from snow surfaces and found that most liquid water clouds and thick
ice clouds have high 2.13 µm reflectance (R2.13) because of their small particle size or high
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2.1 C1: Cloud mask and surface classification

location in the atmosphere, which makes thresholding possible. However, we also found that
a fixed threshold of R2.13 is not appropriate because of the anisotropy of snow reflectance in
the 2.13 µm channel. At low solar illumination angles (i.e. solar zenith angles ≥ 70◦) the
threshold value should be higher than at nadir to avoid mis-classification of snow as clouds.
Furthermore, we found seasonal and surface elevation dependence of the threshold value
mainly due to different atmospheric absorption (primarily water vapor absorption) of the
reflected 2.13 µm signal under different surface elevation and atmospheric conditions. For
example in Greenland, snow surfaces generally look “brighter” in Spring than in Summer
and Autumn, implying that higher thresholds must be applied. Also, we should use a
higher threshold value at Automated Weather Station (AWS) Summit (elevation: 3,254 m)
than at Swiss camp (elevation: 1,149 m) since the snow surface at Summit would generally
have higher 2.13 µm reflectance than the same snow surface at Swiss camp under the same
solar/viewing geometry. In order to accommodate these many factors, we use the following
strategy: The threshold is set to be the ‘maximum possible snow reflectance’ defined as the
simulated R2.13 reflectance of ‘very fine grained’ snow for a given elevation and atmospheric
condition. We chose to model reflectance of snow instead of clouds for the cloud mask
development because there could be many types of clouds over snow making it difficult to
decide what kind of R2.13 reflectance a cloud should have. However, if we can establish “the
maximum R2.13 value that a natural snow surface can have” then the situation becomes more
clear. We finally chose R2.13 reflectance of snow with effective grain size reff ≈ 25µm as the
threshold (ThR2.13) since this grain size is smaller than most of the snow grains that exist
in nature. By applying this threshold, water clouds and thick ice clouds with high 2.13 µm
reflectance can be distinguished without mis-classifying most snow pixels as clouds. Lookup
tables that cover all possible solar/viewing geometries applicable for daytime operation of
the SGLI were prepared so that for each satellite pixel an appropriate threshold value can
be dynamically determined consistent with the actual solar/viewing geometry.

We further explored the dynamic threshold method by using two SWIR channels (i.e.
MODIS channels at 1.64 µm and 2.13 µm for Terra, and at 1.24 µm and 2.13 µm for
Aqua). Figure 3 is a radiative transfer simulation of MODIS channel 6 (1.64 µm) and
channel 7 (2.13 µm) reflectances of water/ice and mixed phase clouds over snow surfaces
with different snow grain sizes under a common solar/viewing geometry (solar zenith angle
(SZA) = 60◦, viewing zenith angle (VZA) = 20◦, relative azimuth angle (RAZ) = 112◦) in
the polar regions. In the simulations we used the Sub-Arctic Summer atmospheric profile;
the snow surfaces are assumed to consist of snow with effective grain sizes of 50, 100 and
400 µm; a liquid water cloud, located at 2 km above the snow surface, assumed to have an
effective particle size of 15 µm; an ice cloud, located at 10 km altitude, assumed to have
an effective particle size of 42 µm. The inherent optical properties (IOPs) for water clouds
were obtained from the parameterization of Hu & Stamnes [1993] and ice cloud IOPs were
taken to be that of “rough aggregate” particles in the parameterization by Key et al. [2002].
The optical depth for water/ice clouds at 0.645 µm ranged between 0.01 and 5. Additional
calculations of the snow cases (grain radius range: 15 - 2000 µm) in the absence of clouds
were also performed. All the calculations were performed using an extended version of the
DISORT [Stamnes et al., 1988a] radiative transfer model with a Earth curvature correction
[Dahlback & Stamnes, 1991]. In Fig. 3 reflectances of clouds over snow cases are represented
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2.1 C1: Cloud mask and surface classification

by colored symbols: green for ice clouds, cyan for water clouds and blue for mixed ice and
water clouds. Different symbols indicate different cloud optical depths. For example, the
three green ‘crosses’ represent the reflectance of ice clouds with optical depth τi = 0.1 over
snow with reff = 400, 100, and 50 µm, while the green ‘circles’ are for τi = 0.5 cases. Green
dashed lines indicate ice cloud cases with different optical depths over an underlying snow
surface with the same grain size. Reflectances of snow in the absence of cloud cover are
represented by the black dots.
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Figure 3: Simulated R2.13 and R1.64 of clouds over snow. rsnow is the effective grain radius of
the snow; three ‘background’ snow grain radii (50, 100 and 400 µm) are used when simulating
the reflectances of cloud over snow, τw and τi are water and ice cloud optical depth at 0.645
µm respectively. Sub-Arctic Summer atmospheric profile is used in the simulation and the
solar/viewing geometry adopted in this figure is: solar zenith angle (SZA) = 60◦, viewing
zenith angle (VZA) = 20◦, relative azimuth angle (RAZ) = 112◦.

From the simulated results we can infer:

• The reflectance from water clouds in the SWIR channels increases drastically as their
optical depth increases and it saturates at a higher level than that of snow. More
importantly, the reflectance from water clouds depends little on surface properties
(except for the extremely thin (τi = 0.01) cases), which might indicate that a constant
R2.13 or R1.64 threshold would be good enough to separate water clouds from underlying
snow surfaces.
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2.1 C1: Cloud mask and surface classification

• The reflectances of mixed ice and liquid water clouds are largely dominated by the
contribution from water droplets (even with optical depth 0.01) implying that they
might also be distinguished from snow in a way similar to that for water clouds.

• For ice clouds the situation is more complicated. We can see that very thin ice clouds
(like the green ‘crosses’ with τi = 0.1) are very difficult to distinguish from snow since
their reflectances closely resemble those of snow with smaller grain sizes. We also find
that the reflectance for thin to moderately thick ice clouds (τi = 0.1 → 1) depends
strongly on the reflectance contribution of the snow surfaces underneath. The green
‘circles’ in Figure 3 show that ice clouds with τ ≈ 0.5 or thinner might be separated
from the cloud free cases by a proper thresholding method.

An illustration of the ‘Model Suggested Threshold’ (MST) for the particular solar/viewing
geometry adopted in Fig. 3 is shown as the red line. The threshold consists of two parts:
the horizontal part is the aforementioned R2.13 threshold (ThR2.13), which is calculated from
the reflectance of ‘very fine grained’ snow (reff ≈ 25µm) and is designed to pick up thick
ice clouds and liquid water clouds. The curved part (blue line) is a quadratic fit to the 1.64
µm and 2.13 µm reflectances of snow, designed to pick up thinner ice clouds. For a possible
snow pixel it is calculated as ThR2.13�1.64 = c0 + c1R1.64 + c2R

2
1.64, where R1.64 is the 1.64 µm

reflectance of that pixel, the symbol � indicates the dependence of this threshold on the
R1.64 reflectance. The fitting coefficients c0, c1 and c2 depend on the solar/viewing geometry.
Figure 3 shows that cloudy cases are ‘above’ the MST line in the R1.64 - R2.13 space which
implies that a snow pixel with 2.13 µm reflectance greater than the corresponding MST
value is suspected to be cloud contaminated. The ‘clear confidence’ indices are estimated
linearly using the two parts of the MST (ThR2.13 and ThR2.13�1.64 respectively), ranging
between 0% clear (‘confident cloudy’) and 100% clear (‘confident clear’) and the final clear
confidence level is taken to be the minimum value of the two calculated clear confidence
indices. The thresholds and corresponding confidence levels are summarized in Table 2. An
artificial offset f is added to the curved part of the threshold to accommodate errors from
the model. Currently f is set to be 0.0016 for the test over the Greenland region. The
simulation using the 1.24 µm and 2.13 µm channels of MODIS Aqua yielded similar results,
except that a four degree polynomial was needed to fit the curved part of the suggested
threshold. So the corresponding formula for the curved part of the threshold would become:
ThR2.13�1.24 = c0 + c1R1.24 + c2R

2
1.24 + c3R

3
1.24 + c4R

4
1.24. A multi-linear interpolation scheme is

used to dynamically interpolate the suggested threshold line according to the solar/viewing
geometry of each satellite pixel. The threshold depends on season, location and surface
elevation. Currently, three model atmospheric conditions: Sub-Arctic Summer, Sub-Arctic
Winter and Mid-latitude Winter are tested and a model-based scaling method (please see
Chen et al. [2014] for details) is applied to deal with potential issues associated with the
surface elevation.

2.1.3 Cloud test over sea ice and ocean

The above SWIR dynamic threshold tests are all designed for snow covered land areas. Over
ocean areas we use the ratio of R2.13/R0.65 instead of R2.13 since for some clouds over ocean
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2.1 C1: Cloud mask and surface classification

Table 2: SWIR test thresholds for clear confidence level determination

Threshold part Threshold value and clear confidence
Confident clear Confident cloudy

Horizontal Part R2.13 ≤ ThR2.13 R2.13 ≥ ThR2.13 + 0.05
Curved Part R2.13 ≤ ThR2.13�1.64 + f R2.13 ≥ ThR2.13�1.64 + f + 0.05

the 2.13 µm signal would be too low to pass the R2.13 threshold, and hence the algorithm will
mis-identify those cloudy pixels as sea ice pixels. However, the ratio R2.13/R0.65 would still
be high enough to allow a proper thresholding method to be applied. Again, this threshold
is dynamically calculated like in the R2.13 method.

2.1.4 Surface classification approach

Another feature of the C1 algorithm is that it provides a detailed classification of the ice
type and snow coverage over sea ice. As discussed by Stamnes et al. [2011], different ice
types have very different ice albedo due to different amounts of scattering inclusions and ice
impurity concentrations, and small amounts of snow on sea ice will significantly change the
albedo of the ice. Thus, a detailed surface classification of sea ice is necessary to obtain a
robust surface retrieval algorithm. We applied the Normalized Difference Ice Index (NDII)
method to achieve this goal in our GLI products [Stamnes et al., 2007a]. Based on our
experience with the GLI algorithm, we are developing a new surface classification algorithm
in C1 using our comprehensive radiative transfer model for the coupled atmosphere-snow-
ice-ocean system [Stamnes et al., 2011].
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Figure 4: Simulated ice and open water spectral albedo and the relative position of SGLI
channels.

Figure 4 shows the spectral albedo of different types of sea ice as well as open water. It
can be seen that SGLI channel VL05 (0.53 µm) and VL07 (0.67 µm) are very sensitive to
the thickness of sea ice and thus would be the optimum channels for sea ice classification and
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2.1 C1: Cloud mask and surface classification

ice/open water separation. Another important task of the C1 algorithm is to separate snow-
covered sea ice pixels from bare sea ice pixels since it is very important to provide correct
pixel information to the C2 algorithm for sea ice/snow property retrieval. We simulated
the spectral albedo of snow-covered and bare sea ice as shown in Fig. 5. It can be seen
that snow and ice have very different albedo values in the NIR and SWIR regions, so SGLI
channel VL10 (0.87 µm) and SW01 (1.05 µm) can provide valuable information to separate
snow covered sea ice from bare sea ice. Due to the strong anisotropy of sea ice and snow
reflectance in the NIR and SWIR region, dynamic thresholds that depend on solar/viewing
geometry will be applied for this purpose.
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Figure 5: Simulated spectral albedo of snow covered/bare first year sea ice.
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2.1.5 Adaptation of C1 algorithm to SGLI sensor

After our successful tests on MODIS data as described in Chen et al. [2014], we adapted our
algorithm to use the channel specifications of GCOM-C1/SGLI and tested its performance
using the SGLI test data. To distinguish clouds over snow covered area, we proposed to use
SGLI channel SW03 (1.63 µm) and SW04 (2.20 µm) since they are the closest equivalents to
MODIS channel 6 (1.64 µm) and channel 7 (2.13 µm). Following the same methodology as
in our previous work, we simulated various cloud/cloud-free cases with different underlying
snow conditions. The result, however, was very different from what we got for the MODIS
channels. Figure 6 shows the simulation of pure ice clouds with different optical depths (green
dots) over different snow cases (black dots) using MODIS (left) and SGLI (right) channel
specifications. One can observe that the previously distinguishable cloudy/cloud-free cases
under MODIS channel specifications are no longer distinguishable by SGLI as the cloudy and
cloud-free cases are closely packed together. This result was unexpected since we thought,
as described in Chen et al. [2014], that the combination of SGLI channel SW03 and SW04
should be an optimum choice for cloud screening over snow covered areas. We seriously
investigated this issue in order to find the reason behind it since it can, if unresolved, render
our SWIR cloud masking scheme inapplicable to the SGLI sensor.

We first noticed different profiles of gaseous absorption in MODIS and SGLI. Figure 7
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Figure 6: Simulated SWIR reflectance of snow (black dots) and ice clouds over snow (green
dots). The ice cloud is assumed to be located at 10 km altitude with an effective particle size
of 42 µm and a “background” snow effective grain sizes of 50, 100 and 400 µm. Cloud-free
snow cases are assumed to have effective grain size between 15 to 2000 µm. Other settings of
the simulation are identical to the simulation in our previous work [Chen et al., 2014]. Left
panel: For MODIS sensor; Right panel: For SGLI sensor, note the cloudy cases (green
dots) are no longer separable from snow cases (black dots) in the simulation for SGLI.
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shows significant change in layer absorption optical depth between the two SWIR channels
from MODIS to SGLI. However, as calculated that this change in gas absorption profile
will only lead to a 4 to 7% difference in the simulation results, which will not be enough to
explain the difference between the results for MODIS and SGLI as shown in Figure 6. So
there must be some other reason for this difference. Next, we focused on the IOPs of clouds
and snow that we used in the simulations. Figure 8 shows the single scattering albedo and
asymmetry factor of snow particles in the SWIR spectral range. We can notice that:

• Snow particles have higher average single-scattering albedo in MODIS channel 6
(1.64µm) compared to that of MODIS channel 7 (2.13µm), which means that snow is
more absorptive in MODIS channel 7 compared to MODIS channel 6. As the grain
size becomes smaller (from 400µm to 100µm) the difference in single-scattering albedo
between MODIS channel 6 and channel 7 becomes larger. However, for the SGLI chan-
nels the differences in single-scattering albedo between two SWIR channels are much
smaller compared to their MODIS counterparts.

• For the MODIS channels, the average asymmetry factor of snow particles is significantly
higher in channel 7 than in channel 6. This difference implies that the phase function
of snow will be more asymmetric in channel 7 (scatters more in the forward direction)
compared to channel 6. For SGLI, however, the difference in asymmetry factor is also
small between two SWIR channels.

The difference in snow IOPs suggests that we should look into the refractive index of ice
in SWIR region. Figure 9 shows the refractive index of ice in the 0.9 to 2.4 µm wavelength
range. One can see that while the real part of refractive index decreases smoothly from about
1.3 to 1.25, the imaginary part, which represents the absorption property of ice, has a peak
at around 2µm. The close position of MODIS channel 7 to this peak results in significantly
more absorption by ice particles in this channel compared to all the other SWIR channels
in MODIS and SGLI (MODIS channels 5, 6, SGLI channels SW01, SW03 and SW04),
which explains the difference of snow IOPs we found earlier. Moreover, since cloud particles
(only ice cloud is discussed here since they are hard to detect compared to water clouds)
are generally smaller than snow particles, the difference in IOPs between an “absorptive”
channel (like MODIS channel 7) and a “non-absorptive” channel (like MODIS channel 6 or
SGLI channel SW03) will be more significant. Figure 10 shows plots of the single-scattering
albedo in the two sensor’s SWIR channels with green colored symbols indicating those for
MODIS (channel 6 and 7) and blue colored symbols those for SGLI (channel SW03 and
SW04). It can be seen that for the MODIS channels the symbols indicating cloud particles
are distinct from the line for snow particles with different grain sizes whereas this behavior is
not true for SGLI. Hence the single-scattering albedo of ice cloud particles in the two SWIR
channels resemble those of snow particles with small grain size for SGLI, which explains the
simulation results for the SGLI sensor (Fig. 6 right panel) where the reflected signals from
ice clouds are converging to the line indicating cloud-free snow cases as the cloud optical
depth increases from 0.1 to 5.
Knowing that the difference in ice absorption is the main reason that we see different results
in our simulations, we now try to follow the strategy of selecting one “absorptive” channel
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Figure 7: Gaseous absorption profile comparison between two SWIR channels. Left: MODIS
channel 6 and 7; Right: SGLI channel SW03 and SW04

and one “non-absorptive” channel from SGLI for the cloud masking over snow. As shown in
Fig. 9, ice is non-absorbing in SGLI channel SW01 and “slightly” absorbing in SGLI channel
SW03 and SW04. So we followed our strategy to select two pairs of SWIR channels as
SW01+SW03 and SW01+SW04 and did simulation accordingly. The results are consistent
with our expectation as shown in Fig. 11, which demonstrates that cloudy and cloud-free
cases are distinguishable. We actually used a similar channel choice in Chen et al. [2014],
where MODIS channels 5 and 7 were used with Aqua MODIS data, and its performance was
validated by collocated CALIOP measurements.
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Figure 11: The same as Figure 6 but for alternative SGLI channels. Left: SGLI SW01 and
SW03; Right: SGLI SW01 and SW04.
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2.2 C2: snow, sea ice and atmospheric parameter retrievals

Basically three key steps are used to retrieve the snow and atmospheric parameters, (i) a
forward radiative transfer model, (ii) a neural network training algorithm and (iii) a nonlinear
optimal estimation method. Figure 12 shows a flow chart of the retrieval algorithm for snow
and atmospheric parameters.
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2.2.1 Forward radiative transfer model
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Figure 12: Flow chart of the atmo-
spheric and snow parameter retrieval
algorithm. All notations are described
in the text.

The discrete-ordinate radiative transfer (DISORT)
model for the atmosphere-snow system was used
to calculate the radiance at the top of the at-
mosphere as a function of atmospheric and snow
physical parameters [Stamnes et al., 1988b, 2007b].
This model has a pseudo-spherical treatment for
solar beam attenuation in a curved spherical-shell
atmosphere [Spurr, 2002], and it has been vali-
dated against Monte-Carlo results [Gjerstad et al.,
2003]. We calculate the extinction coefficient,
single-scattering albedo, and phase function using
a Mie code based on conventional light-scattering
theory, under the assumption of spherical grain
shapes.

Snow model In the snow model, since we know
the size distribution of snow particles [Aoki et al.,
2000], an effective snow grain radius is considered
for the optical properties of snow. The size distri-
bution of snow particles is a log-normal size distri-
bution with a geometric standard deviation of 1.6
measured by Grenfell & Warren [1999a] in Antarc-
tica. The refractive indices of ice are taken from
the data compiled by Warren & Brandt [2008] (Fig.
13). For a mixture of snow/ice and impurities, the
effective optical properties of the mixture are ob-
tained by weighting each component so that the
volume extinction coefficient β̃ext, the single scat-
tering albedo ω and the phase function asymmetry
factor g of an external mixture are obtained as fol-
lows:

β̃ext = (1− f)β̃iceext + fβ̃impext = [(1− f)ρsκ
ice
ext + fρimpκ

imp
ext ], (2)

ω =
(1− f)ωiceκiceext + fωimpκimpext

(1− f)kiceext + fkimpext

, (3)

g =
(1− f)ωiceκiceextg

ice + fωimpκimpext g
imp

(1− f)κicesca + fκimpsca

, (4)

where κext and κsca are the mass extinction and scattering cross sections, respectively, and
the superscripts ice and imp denote the components for ice and impurity, respectively, f is
the mass-fraction of the impurity in unit [ppmw], ρs is the snow mass density, and ρimp is
the impurity mass density. For snow impurities, we used a black carbon model [Hess et al.,
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1998] for the refractive index of the snow impurity (Fig. 13). The snow optical depth for
each homogeneous layer within the snowpack is

τ `s = β̃iceexth
` = ρ`sβ

ice,`
ext h

`/ρice and βice,`ext =
3Q̃`

ext(r
`
eff)

4r`eff

, (5)

where r`eff , ρ`s and h` are the effective snow grain radius, the snow mass density and the
thickness of the `th layer. ρice is the density of pure ice, and Q̃`

e(r
`
eff) is the extinction

efficiency.

Figure 13: Real and imaginary part of the refractive index of ice [Warren & Brandt, 2008]
and black carbon [Hess et al., 1998].

In the previous snow algorithm, we assumed that the snow grains have spherical shapes.
A comparison of BRDF measurements obtained by the Cloud Absorption Radiometer (CAR)
flown on a NASA aircraft over Elson Lagoon in Barrow, Alaska, see Fig. 14, shows that using
non-spherical (Voronoi) particle shapes to describe snow grains in our coupled atmosphere-
surface radiative transfer model (CRTM) provides a better match with the BRDF measure-
ments than using spherical particles. For the best match, the grain size and impurity are
50 µm and 0.001 PPMW, and the aerosol optical depth is 0.01. These values are consis-
tent with those derived from MODIS data closest in time. This BRDF comparison provides
an opportunity to test which scattering phase function yields the best agreement with the
measured BRDFs. We found that use of the phase function computed from an assembly
of non-spherical Voronoi particles yields a better match with the measured BRDFs than a
Henyey-Greenstein phase function with asymmetry factor obtained from Mie computations.
We have found that the BRDF produced by an assembly of spherical particles cannot match
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the measured one, no matter how we adjust the grain size, the impurity concentration or the
aerosol properties. This predicament implies that the HG phase function is unsuitable for
simulations of the BRDF of snow. Therefore, in year 2015, we updated our snow model to
use Voronoi IOPs in order to improve the performance of the snow retrieval algorithms for
realistic snow surfaces. The Voronoi particle IOPs has been provided by Dr. Aoki’s group
using the ellipse ratio M03. Comparisons of retrieved snow grain sizes from MODS data
obtained using spherical and Voronoi particle models will be discussed in Section 3.2.2.

Phase function for Voronoi particles In many RTMs an expansion of the phase func-
tion in Legendre polynomials is used. This approach requires accurate computation of the
expansion coefficients (phase function moments), which is challenging for phase functions
with sharp forward peaks occurring for scattering by particles that are large compared to
the wavelength. Experimenting with phase functions produced by an assembly of non-
spherical Voronoi particles (Ishimoto et al., 2010), we found that special techniques are
needed to properly treat such a phase function. Due to the very strong peak in the forward
scattering direction, it is very difficult to get the correct phase function moments, needed
in the radiative transfer calculations, by numerical integration, and, if handled improperly
significant errors will occur. In order to deal with this problem, we experimented with the
delta-fit method of Hu et al. (2000) and extended it to treat the entire phase matrix. As an
example, we show in Fig. 15 all phase matrix elements for a collection of spherical particles
computed using a Mie code, and approximated by the delta-fit method. The truncation of
the forward peak by the delta-fit method is quite pronounced. Figure 16 shows I,Q, U and
V components of the reflected light at the TOA computed by our vector radiative transfer
code (VDISORT) using the exact and the delta-fit approximated phase matrices. The good
match for all output angles indicates that our delta-fit approximation to the phase matrix
elements yields reliable TOA Stokes parameters for reflected light. We then applied the
delta-fit method to the phase matrix generated from an assembly of Voronoi particles. As
shown in Fig. 17 the phase matrix resulting from application of the delta-fit method closely
matches the original phase matrix. Hence, our delta-fit treatment of the Voronoi phase
matrix appears to be robust.

Surface elevation correction In cryosphere areas, many places are in high elevation re-
gions, such as Greenland and Antarctica. In these areas, the near surface atmosphere gas
distribution will be different from that at sea level. The gas absorption and molecular scat-
tering layer will be thiner, when the elevation is higher. In order to correct the elevation
effect, we simulated satellite radiances for different elevations (0–4 km). Then using a neural
network technique, we developed a height correction table to convert the satellite measured
radiance from any elevation (0–4 km) to the corresponding sea surface radiance. By doing
so the snow/ice parameter retrieval algorithm, based on the sea level radiances, could be ap-
plied for the retrieval. Figures 18 and 19 show the difference between uncorrected elevation
radiance and the sea level radiance. The difference is up to 10-15% at short wavelengths and
up to 40% in the NIR, due to the strong Rayleigh scattering at short wavelengths and the
strong water vapor absorption in the NIR. The smallest difference is in the 0.865 µm and
1.050 µm channels, since there is weaker absorption and less scattering. So the elevation
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correction is very important in our snow retrieval algorithm. Figure 20 shows a comparison
between corrected sea level radiance and the true sea level radiance. Our correction perfor-
mance is pretty good. The error in the corrected radiance is within about 0.3%.

Snow layer depth Our algorithm was designed with 2 snow layers to explore the snow
vertical structure. Instead of the critical depth used previously, we have fixed the depth of
the first snow layer to be 1.5 cm and the second layer to be 98.5 cm. This new snow first layer
depth is in the range of 1.64 µm channel penetration depth. Since the 1.64 µm channel has
strong snow absorption, and a low S/N ratio, we changed our algorithm to use the 1.05 µm
channel instead of the 1.64 µm channel for snow parameter retrieval. An additional benefit
is that the 1.05 µm channel is less affected by humidity and surface elevation change than
the 1.64 µm channel. In section 3.2, we will apply the new algorithm to MODIS data.

Sea ice model The inherent optical properties (IOPs) of snow can be parametrized in
terms of the snow grain size and impurity concentration. Similarly, the IOPs of ice depend
on scattering/absorbing inclusions (primarily air bubbles and brine pockets) and impurities
embedded in the ice [Jin et al., 1994; Hamre et al., 2004; Jiang et al., 2005; Stamnes et al.,
2011]. If we can retrieve information about the size of the snow grains and scattering ice
inclusions as well as impurity concentrations, we may use a radiative transfer model for the
coupled atmosphere-snow-ice-ocean system (hereafter referred to as CRTM) to compute the
snow/ice BRDF and albedo. Assuming that snow grains and ice inclusions can be adequately
represented by a collection of spherical particles, we may write the IOPs, i.e. the absorption
and scattering coefficients and the scattering phase function as

αp(λ) =
∫ rmax

rmin

πr2Qα(r)n(r)dr , σp(λ) =
∫ rmax

rmin

πr2Qσ(r)n(r)dr , (6)

pp(λ,Θ) =

∫ rmax
rmin

pp(λ,Θ, r)n(r)dr∫ rmax
rmin

n(r)dr
, (7)

where the absorption or scattering “efficiency” Qα(r) or Qσ(r) is defined as the ratio of the
absorption or scattering cross section for a spherical particle of radius r to the geometrical
cross section πr2, and n(r) is the particle size distribution. For a specific value of the
particle radius r, we can compute Qα(r), Qσ(r), and pp(λ,Θ, r) using Lorenz-Mie theory,
but the integrations in Eqs. (6)-(7) require knowledge of the particle size distribution n(r)
which is usually unknown. Equations (6)-(7) can be considerably simplified by making the
following assumptions [Hamre et al., 2004; Stamnes et al., 2011]: (i) The particle distribution
is characterized by an effective radius

reff =

∫ rmax
rmin

n(r)r3dr∫ rmax
rmin

n(r)r2dr

which obviates the need for an integration over r. (ii) The particles are weakly absorbing,
so that

Qα(r) ≈ 16π reff mi,p

3λ

1

mrel

[m3
rel − (m2

rel − 1)3/2] (8)
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where mi,p is the imaginary part of the refractive index of the particle, λ is the wavelength
in vacuum, and mrel = mr,p/mr,med is the ratio of the real part of the refractive index of
the particle (mr,p) to that of the surrounding medium (mr,med). (iii) The particles are large
compared to the wavelength (2πr/λ >> 1) which implies Qσ(r) = 2. The scattering phase
function may be represented by the one-parameter Henyey-Greenstein (HG) phase function,
which depends only on the asymmetry factor

g ≡ 〈cos Θ〉 =
1

2

∫ 1

−1
p(Θ) cos Θ d(cos Θ).

With these assumptions, Eqs. (6)-(7) become:

αp(λ) = α(λ)
1

mrel

[1− (m2
rel − 1)3/2]fV , σp(λ) =

3

2

fV
reff

, (9)

pp(λ,Θ) =
1− g2

(1 + g2 − 2g cos Θ)3/2
. (10)

Here α(λ) is the absorption coefficient of the material of which the particle is composed, and
fV ≡ 4π

3

∫
n(r)r3dr ≈ 4

3
πr3

effne, where ne = number of particles per unit volume with radius
reff . As described by Stamnes et al. [2011] this approach can be extended to work very well
for wavelengths less than about 2.8 µm.

Aerosol model For aerosol retrieval, we assume a fixed aerosol model in the SGLI snow
retrieval algorithm as we did for GLI. But we do consider real humidity information in
the aerosol model. Different geographical regions are expected to have different aerosol
properties, and all aerosol models will be obtained from the OPAC compilation [Hess et al.,
1998]. So only the aerosol optical depth will be retrieved. For the Arctic and Antarctica, we
will directly use the OPAC Arctic and Antarctic aerosol models. For mid-latitude regions,
there are three types of aerosol models available in OPAC (Continental Average, Continental
Clear, Continental Polluted). We are not going to retrieve the relative humidity (RH),
instead we will directly use a given (near-real time) RH value (obtained from other satellite
data) in our aerosol retrieval. We pre-calculated the IOPs for each aerosol type with RH
= 0%, 50%, 70%, 80%, 90%, 95%, 98%, and 99%. Then we linked these 8 humidity values
to provide a continuum of aerosol IOPs by using spline interpolation on humidity. The
humidity is considered to be a given variable which is used in the forward radiative transfer
calculation as well as in our retrieval algorithm. Figure 21 shows the impact of humidity
on the TOA radiance. We compare the TOA radiance for RH = 0% humidity with the RH
values from 50% to 99%. From Fig. 21, we note that in the visible the RH effect could be 4
- 11%, while in the NIR, this effect is smaller, and about 1 - 4%. These results demonstrate
that use of real time RH information will be very important for the snow retrieval because
of the large impact on radiances, especially in the visible spectral range.

In our current algorithm, the aerosol model will be selected based on the geographical
area [Hess et al., 1998]. The near-real time humidity will be obtained from another sensor,
and used in the retrieval code as a given parameter. Thus, the snow and aerosol retrieval
will be based on near-real time humidity information. The atmospheric model will be the
US standard model.
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2.2.2 Neural Network (NN) Training

In order to retrieve the snow and atmospheric parameters simultaneously, we need to use an
inversion method. The traditional lookup table (LUT) interpolation method is not suitable
for simultaneous and accurate retrieval of multiple parameters. Instead, we use a nonlin-
ear, iterative optimal estimation method [Li et al., 2008]. But this approach is very time
consuming because we need to call the forward model repeatedly to compute radiances and
Jacobians required in the nonlinear, iterative optimal estimation method described in the
next section. In order to solve this problem, we replaced the forward radiative transfer model
with a radial basis function neural network (RBF-NN) to establish a relationship between
the retrieval parameters (referred to as P ) and the spectral radiances (referred to as R). A
two-layer RBF-NN was employed here for training of the interpolating radial basis functions.

(a) Spectral radiance to parameters training (R2P training): We start by training
a RBF-NN in which the spectral radiances and the solar zenith angles are used as input data,
whereas the snow and aerosol parameters are the output data. The benefit of this training is
that we can use the results directly to estimate the initial snow and atmospheric parameters
for the retrieval. Thus, by using the training coefficients, we can directly calculate the snow
and atmospheric parameters given by

Pk =
N∑
j=1

akj exp{−b2
Nr∑
i=1

(Ri − cji)2}+ dk, (11)

where N is the total number of neurons, and Nr is the sum of the number of input radiances
and the number of solar zenith angles. The Ri’s are the input parameters, and akj, b, cji and
dk are the optimized coefficients.

(b) Parameters to spectral radiance training (P2R training): The purpose of this
RBF-NN is to provide a relationship between the retrieval parameters and the radiances and
use this analytic relationship to derive an analytic expression for the Jacobians. Both the
radiances and the Jacobians are required in the nonlinear optimal estimation described in
the next section. The input data are the snow and atmospheric parameters (i.e. snow grain
size, snow impurity concentration, and aerosol optical depth) and the solar zenith angles.
The output data are the radiances in all SGLI channels. The spectral radiance Ri in channel
i obtained from the radial basis neural network (RBF-NN) is given as:

Ri =
N∑
j=1

aij exp{−b2
Np∑
k=1

(Pk − cjk)2}+ di, (12)

where N and Np are the total number of neurons and input retrieval parameters, respectively.
The Pk’s are the input parameters, and aij, b, cjk and di are the optimized coefficients. Note
that the radial basis functions functions in Eqs. (11) and (12) are trained on the logarithms
of Ri and Pk, and that normalization has been used to adjust the magnitude of the different
input parameters, because the magnitudes of grain size and optical depth are quite different.
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This difference could decrease the accuracy of the Gaussian radial basis functions [Eq. (12)].
The normalization alleviates this problem.

The Jacobians (partial derivatives) are also required for the retrieval by nonlinear optimal
estimation as discussed in the next section. These Jacobians can be calculated by analytical
differentiation as follows

Jik = −2
N∑
j=1

aijb
2(Pk − cjk) exp{−b2

Np∑
l=1

(Pl − cjl)2}. (13)

2.2.3 Nonlinear optimal estimation

We use cost function minimization techniques appropriate to nonlinear iterative spectral
fitting [Li et al., 2008]. The retrieval parameters are assembled into a state vector x =
[P1, P2, . . . , Pn]T , and the measured radiances into another vector ymeas = [R1, R2, . . . , Rm]T .
The update of the state vector xi at iteration step i is given by [Rodgers, 2000]:

xi+1 = xa + Gi

[
ymeas − yi + Ki(xi − xa)

]
(14)

Gi = SaK
T
i (KiSaK

T
i + Sε)

−1. (15)

The measurement vector ymeas has covariance matrix Sε corresponding to noise ε, yi =
F(xi,b) are simulated radiances generated by the forward model F(xi,b) which is a (non-
linear) function of xi and b (vector of model parameters not retrieved but sources of error).
Ki is the Jacobian matrix of simulated radiance partial derivatives with respect to xi. The a
priori state vector is xa, with covariance Sa. Gi is the gain matrix of contribution functions.
The inverse process starts from an initial guess x0; often set to xa. A convergence criterion
checks progress towards the solution that minimizes the cost function. Besides measurement
noise and a priori covariance (smoothing error), other sources of error are uncertainties in
the elements of b, and forward model uncertainties due to physical and/or mathematical
simplifications.

In order to speed up the retrieval, our algorithm used the RBF-NN method instead of
the traditional LUT approach. This new algorithm has several benefits:

• We use the information available in all channels to solve the inverse problem by the
optimal estimation method to produce simultaneous retrieval of all desired parameters.

• We use the P2R neural network to compute the simulated spectral radiance RNN and
Jacobian JNN , which speeds up the retrieval by a factor of 100 or more compared to
the LUT appraoch.

• We use the R2P neural network to obtain a good first guess of our retrieval. This
approach will effectively decrease the number of iterations required for the optimal
estimation algorithm to converge.
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2.2.4 Snow and sea ice surface albedo retrieval

In the current algorithm, we provide 2 types of broadband snow albedos and one type of
sea-ice broadband albedo in 3 wavelengths ranges (VIS: 0.3 − 0.7 µm; NIR: 0.7 − 2.8 µm;
SW: 0.3 − 2.8 µm). For snow covered surfaces, we have 2 ways to compute the broadband
albedo: direct albedo and indirect albedo. For sea-ice covered areas, we provide only the
direct sea-ice albedo.

Snow indirect albedo From the physical parameters inferred from our snow/ice retrieval
algorithms and the corresponding IOPs derived from them, we may use the CRTM to calcu-
late the broadband albedo, the surface BRDF and the spectral albedo of the coupled system.
These snow/ice parameters include the snow/ice particle size and the impurity concentra-
tion. The broadband snow/ice albedo obtained in this manner is called indirect albedo. It
cloud be the black (transparent) sky (if we ignore the atmosphere) or the actual or blue-sky
snow/ice albedo (if we include the atmosphere and the retrieved aerosol optical depth), but
it is calculated without invoking the Lambertian assumption because the full BRDF of the
surface is accounted for in the CRTM. This snow/ice albedo estimate, based on retrieved
snow/ice IOPs, provides results that are more accurate than those produced by the standard
MODIS broadband albedo algorithm [Li et al., 2007]. In this algorithm, we provide only
the broadband albedo for SGLI standard products, but we have the potential to provide the
BRDF and spectral albedo too.

Snow direct albedo Although the indirect albedo provide a lot of important information,
one key limitation of this indirect albedo estimation is that its accuracy will depend on the
accuracy of the retrieved snow parameters. If the retrieved snow grain size and impurity
concentrations are inaccurate, the inferred albedo results will be inaccurate too. So how do
we validate the retrieved snow grain size and impurity concentration? One option would be
to rely on field measurements, but one is limited by the sparsity of field data, which may be
available only for a few days of the year at a few locations. Another limitation is that field
data do not allow for validation of snow retrievals on a pixel by pixel basis. In view of this
space-time sparsity of field measurements and the critical need for validations, we provide
another albedo, which called the direct albedo.

The direct albedo approach consists of retrieving the actual snow surface albedo directly
from the measured satellite radiances. Using our CRTM for the coupled atmosphere-snow
surface system, we can simultaneously simulate the satellite radiances and the snow surface
albedo as a function of snow grain size and impurity concentration and aerosol optical depth.
These simulations can be used in conjunction with a neural network to estimate directly the
surface albedo and the aerosol optical depth from 8 SGLI channels (or 7 MODIS channels).
In this manner one obtains the actual snow surface albedo of the coupled atmosphere-snow
surface system. Because this actual snow surface albedo is inferred directly from the mea-
sured satellite radiances, it is not influenced by inaccuracies in our retrieved snow parame-
ters. This new direct snow albedo algorithm, can be used for fast and accurate broadband
snow albedo estimation, and the difference between the old (indirect) and the new (direct)
albedo estimations will provide a valuable indicator about the quality of the retrieved snow
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parameters.
The quality of the retrieved snow parameters depends to a large extent on the perfor-

mance of the cloud mask and the surface classification algorithm. Inferior quality of the
retrieved snow parameters in a given pixel is mainly due to imperfect identification of thin
clouds, aerosols, melting snow, ice (instead of snow), or partial vegetation (forest) cover, and
lack of removal of these effects in the TOA radiances. For such “fake” snow pixels, which are
frequently encountered in satellite images, the TOA radiances do not depend on just pure
snow, and the performance of the snow parameter retrieval algorithms is mostly determined
by such “fake” snow pixels. To alleviate this problem, we are providing both direct and in-
direct albedo estimates. By comparing these two albedo estimates we will be able to provide
a snow retrieval quality flag for every pixel in an image. Figure 22 is an example of how we
can use the difference between the two albedo values to estimate the quality of the retrieved
snow parameters. We note that there are many pixels around the edge of Greenland with
large relative differences, implying that the retrieved snow parameters are untrustworthy.
These areas mostly correspond to the sea-ice or melting snow.

Sea-ice direct albedo In year 2014, we used the CRTM to model the radiative transfer
in the coupled atmosphere-sea ice system [Stamnes et al., 2011]. The satellite measured
radiance over sea-ice was simulated as a function of the abundance of air bubbles and brine
pockets in the sea ice as well as its thickness. The direct albedo was computed in a similar
way as described for the snow direct albedo. A neural network technique was used to link the
simulated satellite radiance and pre-calculated values of three broadband surface albedos.
The simulated radiances were computed for sea ice conditions ranging from new ice, first year
ice to multiple year ice. Table 3 lists the sea ice types and ranges used in the simulations.
Each of the three sea ice types includes 10,000 simulation cases, which gives total of 30,000
cases for the neural network training. The direct sea ice albedo model (synthetic) data yields
a very good retrieval as can be seen in Fig. 23. In next year we will test the sea-ice albedo
retrieval algorithm using MODIS data.

Table 3: Sea-ice types and ranges used in the simulations

item New ice First-year ice Multiple-year ice

sea-ice thickness (m) 0.05 - 0.3 0.3 - 1.0 1.0 - 3.0
air bubble volume fraction 0.16 - 0.35 0.11 - 0.24 0.01 - 0.15
brine pocket volume fraction 0.005 - 0.012 0.008 - 0.04 0.012 - 0.07

2.3 C2: Surface temperature retrieval

Based on the GLI snow surface temperature retrieval algorithm, we developed a similar
algorithm for the MODIS and the SGLI sensors. A split-window technique was adopted to
estimate the surface temperature in the polar regions by using MODIS channels 31 (11 µm)
and 32 (12 µm) as well as SGLI channels T1 (10.8 µm) and T2 (12 µm). This algorithm
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consists of two parts: one is using model emissivities to generate the algorithm, another is
based on field-measurements [Hori et al., 2006] to generate the algorithm. Both the sensor’s
viewing angle and the snow grain size were taken into account in this algorithm. This
algorithm could be applied not only to snow-covered sea and land surfaces, but also to a
mixture of snow/ice and melt-ponds. It works only under clear-sky conditions. Even though
the technique used to create this algorithm is similar to that used in estimating sea and land
surface temperatures in general, this algorithm has been developed specifically for the polar
regions and for use with SGLI /MODIS measurements.

2.3.1 Background

The Arctic is particularly sensitive to global climate change. Accurate estimate of surface
temperature could provide an early signal of climate change. The surface temperature in the
polar regions controls sea-ice growth, snow melt, and surface-atmosphere energy exchange.
During the past decade, significant progress has been made in estimation of sea surface tem-
perature and snow/ice surface temperature from satellite thermal infrared data. A common
approach for estimating surface temperature is to relate satellite data to surface temper-
ature observations with a regression model. A radiative transfer model can be applied to
model satellite radiances and brightness temperature. A large set of atmospheric profiles
and measured surface temperature will be used to simulate the satellite measurements un-
der a wide range of conditions. The success of the algorithm depends primarily upon the
variability of surface and atmospheric characteristics. In order to correct for atmospheric
effects, split-window techniques centered around 11 and 12 µm are commonly employed.
Such approaches have been used for SST and IST retrieval [Minnett, 1990; Llewellyn-Jones
et al., 1984; Barton, 1985; Key & Haefliger, 1992; Key et al., 1997; Wan & Dozier, 1996;
Wan, 2008] and they have been applied to AVHRR and ATSR (Along Track Scanning Ra-
diometer) data using two “split-window” infrared channels at approximately 11 and 12 µm.
For the SST algorithm an absolute accuracy of 0.5-1 K (root-mean-square error or RMSE)
has been obtained [Llewellyn-Jones et al., 1984; McClain et al., 1985]. IST accuracies of
0.3-2.1 K relative to measured or modeled surface temperatures have been reported by Key
et al. [1997] using the split-window technique. Land surface temperature (LST) estimation
is generally less accurate due to the larger variability of surface conditions [Price, 1983; Wan
& Dozier, 1996].

The surface emissivity is defined as the ratio of the actual radiance emitted by a given
surface to that emitted by a black body at the same kinetic temperature. It is a key
parameter in this split-window technique. The thermal emissivity of snow/ice has an angular
and spectral dependency [Dozier & Warren, 1982; Warren, 1982; Hori et al., 2006; Hall et al.,
2008]. Also it varies with snow grain size especially at larger grain sizes [Hori et al., 2006;
Hall et al., 2008]. The most significant improvement in this version, except for the effect
of the sensor angle, is that we made the snow emissivity depend on grain size. The field
emissivity data were collected in Japan and Alaska during the year 2002-2004 [Hori et al.,
2006]. We keep both the model emissivity version and the field-emissivity version here for
research purposes. The model version includes only the sensor angle effect. The coefficients
listed in Table 9 are based on the MODIS channels. Since response functions for the SGLI
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channels are now available, in year 2015, we updated the coefficients based on the response
functions for the SGLI channels (see Table 4 - Table 8).

2.3.2 Algorithm description

In this study the MODTRAN radiative transfer model is employed to simulate the radiances
measured by the satellite sensor (e.g., SGLI) using the directional snow emissivities that
are computed with the DISORT radiative transfer model. Since MODTRAN has a 2 cm−1

spectral resolution, it is accurate enough for the purpose of this study. To simulate radiances
in SGLI and MODIS thermal channels, daily temperature and humidity profiles are used
in the MODTRAN radiative transfer model. Radiosonde ascents over the entire Arctic are
taken from the NCEP/NCAR (National Center for Atmospheric Research) Arctic Marine
Rawinsonde archive. This data set contains 17,659 reports of ship (marine) rawinsondes (i.e.,
radiosondes: tracked from the ground by radar to measure variations in wind direction and
wind speed with altitude) for the region north of 65◦. Its record extends from 1976 to 1996.
Sounding data from this NCAR Rawinsonde archive cover different atmospheric conditions
(such as those caused by regional and seasonal variations).

The simple approach for atmospheric correction is to measure radiation from a given field
of view at two or more window frequencies having different atmospheric absorption. The
surface temperature can then be estimated as a linear combination of measured brightness
temperatures at these frequencies:

TS = a(θ) +
n∑
i=1

bi(θ)Ti, (16)

where TS is the measured surface temperature, θ is the satellite scan angle, a(θ) and bi(θ) are
scan angle-dependent coefficients, Ti is the measured brightness temperature in each thermal
channel i, and n is the total number of channels used. The minimization of errors in the TS
measurements relies on correct choice of the coefficients a(θ) and bi(θ).

There are two ways to determine the coefficients. One approach is to relate satellite
observations to surface temperature measurements with a simple regression model. However,
for a robust solution a relatively large set of high-quality in-situ temperature and satellite
data is required. The other approach is the simulation method. A radiative transfer model is
used together with a large set of atmospheric profiles to simulate the satellite measurements
under a wide range of atmospheric conditions and surface temperatures. The simulated
measurements are then used with a set of assigned surface temperature values to derive the
coefficients, again by regression analysis.

Instead of computing a different set of coefficients for each scan angle increment, as shown
in (16), here we use the equation

TS = a+ bT11 + c(T11 − T12) + d[(T11 − T12)(sec θ − 1)], (17)

where TS is the estimated surface temperature (in K), T11 and T12 are the brightness temper-
atures (in K) at 11 µm (SGLI channel T1, MODIS channel 31) and 12 µm (SGLI channel T2,
MODIS channel 32), respectively, and θ is the sensor scan angle. The coefficients a, b, c, and
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d are derived from multilinear regression. This approach using two “split-window” infrared
channels at approximately 11 µm and 12 µm is commonly employed for surface temperature
retrieval [Minnett, 1990; Llewellyn-Jones et al., 1984; Barton, 1985; Key & Haefliger, 1992;
Key et al., 1997; Wan & Dozier, 1996].

To ensure high accuracy the MODTRAN radiative transfer model is employed for sim-
ulating the radiances measured by SGLI/MODIS. In MODTRAN a narrow-band model is
used for computing gaseous optical depth from the HITRAN database with wavenumber
steps of 1 cm−1, which implies a nominal spectral resolution of 2 cm−1 at FWHM (Full
Width at Half-Maximum). Multiple scattering is also included in the radiative transfer
model by combining MODTRAN and DISORT. For the SGLI and MODIS instruments,
since the sensor scan angle lies between 0◦ and 50◦ for SGLI and between 0◦ and 65◦ for
MODIS, our simulations are done for viewing angles in the range of 0◦ − 65◦. The built-in
standard subarctic winter and summer atmospheric profiles including trace gases and the
background aerosol model in MODTRAN are used in our simulations. Blanchet & List [1983]
showed that the volume extinction coefficient of Arctic haze is generally of the same order
of magnitude as for troposphere aerosols. Thus, we use the troposphere background aerosol
model instead of Arctic haze. The calculations of the retrieval coefficients in Eq. (17) using
both SGLI and MODIS channels are presented in this document for testing and validating
the algorithm. The sensor response functions both for SGLI channels T1 and T2 and for
MODIS channels 31 and 32 are used to compute radiances at the top of the atmosphere, and
the radiances are then converted to brightness temperature by use of the Planck function.

Table 4: The SGLI coefficients in Eq. (17) for model emissivity algorithm.

Temperature range (K) a b c d Corr. coef.

≤ 240 -0.9420168 1.003281 2.080047 0.2917113 0.9991578
240 -260 -1.700981 1.006895 1.668042 0.4842514 0.9998550
260-270 -0.5846105 1.003292 1.329147 0.5522773 0.9975470
270 - 275 -3.221689 1.012690 1.455035 0.4839154 0.9915375
≥ 275 2.843076 0.9904238 1.562278 0.4033772 0.9963182

Table 5: The SGLI coefficients in Eq. (17) for fine dendrite snow in field emissivity algorithm.

Temperature range (K) a b c d Corr. coef.

< 240 -1.090729 1.004445 2.084182 0.3006721 0.9991575
240 -260 -1.788184 1.007761 1.656945 0.5195864 0.9998645
260-270 -0.5331097 1.003598 1.317247 0.5939672 0.9975812
270 - 275 -3.630045 1.014699 1.441280 0.5123382 0.9904801

SGLI Algorithm Description 31



2.3 C2: Surface temperature retrieval

Table 6: The SGLI coefficients in Eq. (17) for medium granular snow in field emissivity
algorithm.

Temperature range (K) a b c d Corr. coef.

< 240 -1.248099 1.005447 2.083595 0.2596135 0.9991561
240 -260 -2.110133 1.009418 1.751293 0.4588805 0.9998040
260-270 -0.7415222 1.004917 1.331195 0.6152086 0.9980019
270 - 275 -4.578181 1.018801 1.415663 0.5270104 0.9942210

Table 7: The SGLI coefficients in Eq. (17) for coarse grain snow in field emissivity algorithm.

Temperature range (K) a b c d Corr. coef.

< 240 -1.299243 1.005852 1.927811 0.2369569 0.9991557
240 -260 -2.174245 1.009710 1.758209 0.4572233 0.9998040
260-270 -0.7264020 1.004918 1.348086 0.6092463 0.9980387
270 - 275 -4.302524 1.017884 1.413851 0.5349259 0.9943376

Table 8: The SGLI coefficients in Eq. (17) for sun crust snow in field emissivity algorithm.

Temperature range (K) a b c d Corr. coef.

< 240 -0.7152216 1.000973 2.055423 0.1783278 0.9991505
240 -260 -1.733492 1.005832 1.758956 0.3113386 0.9998055
260-270 -1.223238 1.004883 1.373944 0.4460161 0.9981163
270 - 275 -4.154361 1.015466 1.419622 0.4283974 0.9959655

Table 9: The MODIS coefficients in Eq. (17) for model emissivity algorithm.

Temperature range (K) a b c d Corr. coef.

≤ 240 -1.624761 1.008296 2.800785 -0.9120480 0.9991578
240 -260 -2.019964 1.009724 2.500067 -1.009879 0.9998550
260-270 -5.224606 1.022082 1.568301 0.1110692 0.9975470
270 - 275 -2.013436 1.009982 1.558308 -1.298285 0.9915375
≥ 275 -0.4194403 1.004087 1.821280 1.644374 0.9963182
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Figure 14: BRDF comparison between snow model simulation (voronio and spherical par-
ticle) and CAR measurement over Elson Lagoon, Barrow on April 7, 2008. The modeled
BRDF was computed at height 635m, which is the aircraft height. Top 3 panels are the
3600 BRDF. lower 4 panels are BRDF at principal plane, 450, 1350 plane and cross plane,
separately.

Table 10: The MODIS coefficients in Eq. (17) for fine dendrite snow in field emissivity
algorithm.

Temperature range (K) a b c d Corr. coef.

< 240 -1.793135 1.009592 2.802395 -0.8154156 0.9991575
240 -260 -2.072019 1.010481 2.503243 -0.9555640 0.9998645
260-270 -4.873211 1.021244 1.713263 -0.3119795 0.9975812
270 - 275 -1.887228 1.010038 1.624779 0.9791106 0.9904801

SGLI Algorithm Description 33



2.3 C2: Surface temperature retrieval

0 45 90 135
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

F11(phase function)

 

 

original

delta−fit

0 45 90 135
−1.5

−1

−0.5

0

0.5

1

1.5
F33/F11

 

 

original

delta−fit

0 45 90 135
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
F12/F11

 

 

original

delta−fit

0 45 90 135
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
F34/F11

 

 

original

delta−fit

 Mie scattering matrix elements, original vs delta−fitted, Kokhanovsky (2010) aerosol, r
g
 = 0.3µ m, [ln(sigma

g
)]

2
= = 0.8464, λ = 0.412µ m, Θ

T
 = 5

o
, NMOM = 150

Figure 15: Elements of the Stokes scattering matrix for an ensemble of spherical aerosol
particles: Original versus delta-fit approximation.
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Figure 16: Stokes parameters of reflected light at TOA computed using exact Mie and delta-
fit approximated phase matrices. From top to bottom, I, Q, U , and V components. The
exact Mie results were obtained using 300 moments whereas 150 moments were used to
obtain the delta-fit results.
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Figure 17: Elements of the Stokes scattering matrix for an ensemble of non-spherical Voronoi
particles: Original versus delta-fit approximation.
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Figure 18: The simulated satellite radiance relative difference (%) between different eleva-
tions and sea level.
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Figure 19: The histogram of simulated satellite radiance difference between uncorrected
elevation radiance and sea level radiance.
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Figure 20: The histogram of simulated satellite radiance difference between corrected sea
level radiance vs. the true sea level radiance.
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Figure 21: Humidity effect (%) on TOA radiance. Aerosol model: Arctic aerosol from OPAC.
Solar zenith angle 50◦, sensor zenith angle 65◦, relative azimuth 120◦, aerosol optical depth
0.08 at 859 nm, first layer grain size 80 µm, second layer grain size 800 µm, impurity 0.01
ppmw.

SGLI Algorithm Description 38



2.3 C2: Surface temperature retrieval

Figure 22: The relative albedo differences between the Terra and Aqua images obtained on
June 27, 2012 over Greenland.

Figure 23: Sea-ice albedo model data retrieval.
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2.3 C2: Surface temperature retrieval

Figure 24: Flow chart of the surface temperature retrieval algorithm.

For the model emissivity version, the directional surface emissivities of snow are calcu-
lated based on an extended version of the DISORT radiative transfer model appropriate for
the coupled atmosphere-surface system. This algorithm allows us to study the bidirectional
reflectance and directional emissivity for a surface covered with different types of snow and
sea ice. The coefficients a, b, c, and d in Eq. (17) for SST retrieval are calculated within the
following four temperature ranges: (i) T11 ≤ 240 K; (ii) 240 K ≤ T11 ≤ 260 K; (iii) 260 K
≤ T11 ≤ 270 K; and (iv) 270 K ≤ T11 ≤ 275 K.

Table 11: The MODIS coefficients in Eq. (17) for medium granular snow in field emissivity
algorithm.

Temperature range (K) a b c d Corr. coef.

< 240 -0.9379274 1.004896 2.737998 -1.335196 0.9991561
240 -260 -2.202930 1.010195 2.145490 -0.4138538 0.9998040
260-270 -5.629201 1.023626 1.206063 -1.213855 0.9980019
270 - 275 -2.846899 1.012921 1.494790 1.672925 0.9942210

For the field emissivity version, the field measured emissivity ([Hori et al., 2006]) was
used to calculate the coefficients a, b, c, and d. There are 4 different types of snow according
to the snow grain size. They are the fine dendrite snow; medium granular snow, coarse grain
snow, and sun crust. When the grain size increases, the emissivity decreases. We used the
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2.3 C2: Surface temperature retrieval

Table 12: The MODIS coefficients in Eq. (17) for coarse grain snow in field emissivity
algorithm.

Temperature range (K) a b c d Corr. coef.

< 240 -1.206548 1.006264 2.743953 -1.425086 0.9991557
240 -260 -2.377483 1.011157 2.087973 -0.2680590 0.9998040
260-270 -5.616658 1.023869 1.192855 1.248157 0.9980387
270 - 275 -2.792477 1.013001 1.489832 1.701098 0.9943376

Table 13: The MODIS coefficients in Eq. (17) for sun crust snow in field emissivity algorithm.

Temperature range (K) a b c d Corr. coef.

< 240 -1.338066 1.007215 2.738751 -1.453996 0.9991505
240 -260 -2.513868 1.012142 2.012193 -0.1153396 0.9998055
260-270 -5.590907 1.024266 1.125157 1.502457 0.9981163
270 - 275 -3.277824 1.015255 1.484559 1.794687 0.9959655

same four temperature ranges in the model emissivity version for these four snow grain types.
So in this version, we first establish to which snow type the retrieved first layer grain size
belongs. The second step is to check the brightness temperature at 11 µm, to decide which
temperature group to use. The last step is to use Eq. (17) to calculate the temperature.

For temperatures larger than 275 K, we assume that a mixture of snow/ice and melt-
ponds occurs. Because we have no field measurement data for this situation, we will use
model emissivity. In such cases the surface emissivities are assumed to be an area-weighted
sum of snow and water emissivities. The weights are 0.2 for snow and 0.8 for water. Obvi-
ously, this approximation could lead to an uncertainty in the estimated surface temperature.

The procedure used to determine the coefficients in Eq. (17) may be summarized as
follows (see Fig. 24). The surface physical properties, observed atmospheric profiles, sensor
response functions, and snow directional emissivity data, calculated using the DISORT RT
model or taken directly from field measurements, are input into MODTRAN to simulate
radiances at SGLI/MODIS channels for a wide range of atmospheric conditions. In these
simulations, the temperature of the first layer just above the surface is taken to be the surface
temperature. The simulated radiances are integrated with the sensor response functions for
the SGLI/MODIS channels:

Ri =
∫ λ2

λ1
R(λ)φi(λ)dλ, (18)

where Ri is the simulated radiance, and φi is the sensor response function for channel i.
Then, the integrated, simulated radiances Ri are converted to brightness temperatures Ti.
A least-squares multilinear regression is used to determine the coefficients in Eq. (17). The
coefficients in Eq. (17) for the MODIS channels are presented in Tables 9-13, respectively.
The correlation coefficients between estimated and actual surface temperature are also given
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in Tables 9-13.
In order to develop an algorithm using the split-window technique specifically for the po-

lar regions, atmospheric profiles from the NCEP/NCAR Arctic Marine Rawinsonde Archive
are used for simulating the sensor-measured radiances. More than 7,000 radiosonde pro-
files are used for the surface temperature algorithm development. The data set from the
NCEP/NCAR Arctic Marine Rawinsonde Archive covers a large range of atmospheric con-
ditions including different seasons and different locations across the Arctic.

2.4 Aerosol over snow retrieval by use of polarization channels

Aerosols have a major impact on the radiative energy balance and climate. In view of
the scarcity of cryospheric field measurements, satellite remote sensing has a great advantage
by providing accurate estimation with good temporal and wide spatial coverage. However,
owing to the high brightness of snow surface that dominates the TOA radiance, and the
large variation in snow reflectance determined by grain size (snow age and temperature) and
embedded impurities, aerosol retrieval over high albedo snow surfaces remains a challenging
problem.

In year 2015, we attempted to address this problem by using the information in SGLI
non-polarized channels available for snow retrieval to obtain a direct simultaneous fitting of
the measured TOA radiances to derive an optimum set of aerosol and snow properties. For
this purpose we used a linearized radiative-transfer model for the coupled atmosphere-snow
system, in combination with a non-linear, iterative optimal estimation (OE) inverse method
for simultaneous retrieval of aerosol and snow properties. In the validation work, we found
that the aerosol retrieval result is not as good as desired, because it is difficult to separate the
contribution of aerosols to the TOA radiance from that due to snow impurities. Therefore,
we tried to add SGLI polarized channels in our simultaneous retrieval to improve the aerosol
results, since the polarized signal will be more sensitive to the small aerosol particles than to
the large snow particles. We already did some preliminary work using our Vector Radiative
Transfer Model (VDISORT: ?; ?) to compute the polarized radiance I = [I,Q, U, V ]t at the
TOA. For this purpose we used a standard aerosol model [Hess et al., 1998] and the IOPs of
the snow grains were computed either from Mie theory (assuming spherical particles) or by
using an assembly of non-spherical Voronoi particles [?]. The snow impurities were assumed
to consist of soot particles internally mixed with the snow grains.

Figure 25 shows the sensitivity of TOA scalar reflectance

RI = πI/µ0F0

and polarized reflectance

RP = π
√
Q2 + U2/µ0F0

in the SGLI channel at 0.6735 µm to variations in the soot concentration for a snowpack
consisting of Voronoi particles with a fixed grain size of 100 µm. The aerosol model used
was OPAC summertime (Hess et al., 1998).

Figure 26 shows a similar sensitivity test for variations in aerosol optical thickness. As
expected, the results show that for large snow grains the polarized reflectance is insensitive

SGLI Algorithm Description 42



2.4 Aerosol over snow retrieval by use of polarization channels

0 20 40 60 80

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R
ef

le
ct

an
ce

∆φ = 0
◦

0 20 40 60 80
0.05

0.06

0.07

0.08

0.09

0.1

0.11

P
ol

ar
iz

ed
 R

ef
le

ct
an

ce

0 20 40 60 80
0.2

0.3

0.4

0.5

0.6
∆φ = 90

◦

0 20 40 60 80
0.04

0.06

0.08

0.1

0.12

0.14

0.16

View Angle (°)

0 20 40 60 80

0.35

0.4

0.45

0.5

0.55
∆φ = 180

◦

0 20 40 60 80
0

0.02

0.04

0.06

0.08

 

 

soot=0.01
soot=0.1
soot=1.0
soot=10.0

Figure 25: Reflectances for several values of the soot concentration in the snow. Upper
panels: scalar reflectance RI . Lower panels: Polarized reflectance RP . The aerosol model
was from OPAC summertime (Hess et al., 1998) with an optical thickness of 0.05. The solar
zenith angle was θ0 = 45◦.

to the soot concentration, whereas the polarized reflectance in the forward direction (∆φ ∈
[0◦, 90◦]) is sensitive to aerosol optical thickness. From this sensitivity study, we can conclude
as follows:
• It is not possible to distinguish between AOT (aerosol optical thickness) effects and

absorption by snow impurities using radiance-only observations.

• The AOT can be distinguished from snow impurity by using the polarized reflectance.

• The polarized reflectance in the forward direction (∆φ ∈ [0◦, 90◦]) is more sensitive to
AOT.

The SGLI polarized sensor is designed to be tilted into the forward scatting direction (”For-
ward Looking” in the NH and ”Backward Looking” in the SH) (see Fig. 27). Thus, it provides
a good opportunity to improve aerosol retrieval over bright snow surfaces by using SGLI’s
polarization channels. We will continue this work in the next 3 years. We will also explore
the advantage of combining the scalar radiance measurements obtained from the other SGLI
channels appropriate for retrieval of aerosol/snow properties with the polarized radiances
obtained from the two SGLI channels at 0.6735 µm and 0.8685 µm. This approach will also
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Figure 26: Reflectances for several values of the aerosol optical thickness. Upper panels:
scalar reflectance RI . Lower panels: Polarized reflectance RP . The aerosol model was from
OPAC summertime (Hess et al., 1998 and the snowpack consisted of an ensemble of 100 µm
Voronoi particles externally?? mixed with 1.0 ppm black carbon. The solar zenith angle
was θ0 = 45◦.

allow us to use information obtained from multiple angles, which is expected to not only
improve the quality of retrieved snow properties, but also help solve the problem associated
with the aerosol retrievals over bright surfaces.

3 Algorithm Application and Validation

3.1 Application and validation of the C1 algorithm

We tested our methodology on MODIS data and compared our results with corresponding
results produced by the latest version (Collection 6) of the MODIS Cloud Mask (MOD35 and
MYD35 for MODIS Terra and Aqua, respectively). In addition to the image-based tests we
did a direct comparison of C1 and MYD35 with the CALIOP 1 km cloud layer product for a
whole year of data collected over Greenland. This long-term statistical validation using the
active cloud detection scheme of CALIOP provides the most reliable assessment currently
available of both the C1 and the MODIS cloud masks, and more information can be obtained
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Figure 27: The SGLI polarization sensor orbit direction.
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by comparing the results from different seasons. Data from year 2007 were chosen since this
year is the first year for which CALIOP has a whole year of observations over Greenland,
since CALIOP onboard the CALIPSO satellite was launched April 28, 2006. Only land
pixels were included in the statistics since we want to focus on the Greenland land area. The
blue bands of MODIS Terra are continually degrading at a faster rate than those of MODIS
Aqua. We therefore want to use old data not influenced by this degradation to avoid its
impact on C1’s NDSI snow identifier. From June 1 to August 10 we used the Sub-Arctic
Summer atmospheric constituent profiles [Anderson et al., 1986] in the dynamic threshold
calculation whereas the Sub-Arctic Winter profiles were chosen for the rest of the year. In
the tests we configured C1 to use different SWIR channels for the MODIS sensors on Terra
and Aqua:

1. MODIS channel 6 (1.64 µm) and channel 7 (2.13 µm) were used in the test with MODIS
Terra data. Since these two channels are close to SGLI channels SW3 (1.63 µm) and
SW4 (2.20 µm) we consider tests with MODIS Terra data to be a simulation of C1’s
performance on the future SGLI sensor.

2. MODIS channel 5 (1.24 µm) and channel 7 (2.13 µm) were used with MODIS Aqua
data due to the detector problem of MODIS Aqua channel 6. MODIS Aqua data can be
collocated with CALIOP measurements. Hence, we can use CALIOP as a benchmark
to evaluate the performance of our algorithm. Also it would be interesting to see how
it performs using different SWIR channels and we consider it a good way to test our
methodology.

3.1.1 Image-based tests over Greenland

As a cloud mask designed to work in the polar regions, one of the main targets of the
C1 algorithm is that it should deliver reliable cloud mask results over Greenland, which
is one of the most difficult places for a cloud mask algorithm because of the high altitude
of the Greenland ice sheet and the extremely low surface temperature. Figure 28 shows a
comparison between C1 and MOD35 over Greenland with the northwest coast of Greenland
(Qaanaaq and Peary land) located at the upper left corner of each panel. In the color
composite, the 0.65 µm band is assigned to the red, the 1.6 µm band to the green and the
12.0 µm band to the blue. The clouds are usually in yellow (low-level water clouds), white
(mid-level water clouds), orange or red (thick ice clouds with low cloud top temperature)
and sometimes blue (thin ice clouds). Snow areas are usually shown in magenta. In the
cloud mask results (bottom panels) clouds with cloudy confidence levels from low (dark
gray, 66% < clear confidence level ≤ 99%), medium (gray, 33% < clear confidence level ≤
66% ) to high (white, clear confidence level < 33%, mostly cloudy) are plotted together
with snow (red), sea ice (purple), open land (green) and open ocean (blue). For MODIS
Cloud Mask results the “confidently cloudy” and “probably cloudy” categories are treated
as cloudy scenes and “confidently clear” and “probably clear” are treated as clear scenes. In
the circled part of the image areas with thick ice clouds are apparent from either the RGB
or the 11 µm BT plots (very low temperatures). MOD35 (lower left) mis-classified this area
as snow, while C1 (lower right) correctly masked out this cloudy area. Our tests indicate
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that in the polar regions the MODIS cloud mask will sometimes miss some of the cirrus
clouds or multi-layer clouds with very low temperature. The drastic temperature change
during daytime and temperature inversions may create problems for the BT and BTD tests,
whereas the reflectance-based scheme of our algorithm is largely unaffected by temperature
effects.

3.1.2 Direct comparison with CALIOP using MODIS Aqua data

The launch of NASA’s Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) satellite with its onboard CALIOP instrument provides vertically resolved cloud
and aerosol information. When accurately collocated with MODIS Aqua measurements
CALIOP can provide valuable evaluation of the cloud mask performance of C1 and MYD35
from an active cloud detection perspective. Liu et al. [2010] used CALIOP data to evaluate
the accuracy of MODIS Cloud Mask products over Arctic sea ice and found that the MODIS
Cloud Mask generally performs better over open ocean than over Arctic sea ice surfaces. In
our study we are focusing on the Arctic region and on the Greenland plateau, in particular.
The collocated data from CALIOP and MODIS Aqua was taken from March to October
of 2007 and the collocation method presented by Holz et al. [2008] was used. We chose to
start our comparison from March and end by October because C1 is a daytime algorithm
and there is very little data in the Winter season. We are taking the results from CALIOP
as the ‘truth’ to assess the performance of C1 and MYD35. Some detailed statistics of the
hit rate and the Hanssen-Kuipers Skill Score or True Skill Score (TSS) [Hanssen & Kuipers,
1965] from three time periods in 2007 are shown in Table 14. The hit rate is defined as:

Hit rate =
Ncld,hit +Nclr,hit

Ntotal

(19)

where Ncld,hit is the number of pixels for which C1 or MYD35 agreed with CALIOP that
a cloud was detected, and Nclr,hit is the number of pixels for which they agreed that clear-
sky was detected and Ntotal = Ncld,hit + Ncld,miss + Nclr,hit + Nclr,miss is the total number of
MODIS Aqua pixels collocated with CALIOP measurements, including pixels for which the
two algorithms disagreed. The TSS defined as:

TSS =
(Ncld,hit ·Nclr,hit −Ncld,miss ·Nclr,miss)

(Ncld,hit +Ncld,miss) · (Nclr,hit +Nclr,miss)
(20)

is widely used to evaluate the effectiveness of a prediction. It provides useful information
of the hit rate with respect to the false alarm rate (miss rate), and will remain positive
as long as the hit rate is higher than the false alarm rate. A higher TSS means a more
reliable prediction and identification from the algorithm. Figure 29 shows a comparison of
hit rates and TSS obtained for C1 and MYD35 using CALIOP 1 km cloud layer results as a
benchmark. From the statistics we see that C1’s performance is generally better than that of
MYD35 especially from late-Spring to mid-Autumn with higher hit rate and TSS score. In
early Spring (March, April)/late Autumn (October) C1 and MYD35 perform very similarly,
but C1 generally has a higher hit rate but slightly lower TSS, indicating a higher false alarm
rate. We checked images from the above seasons and found that our algorithm would produce
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Figure 28: C1 vs. MOD35 Collection 6 (MOD35 C6) for a Terra MODIS image, obtained on
July 29, 2005 over Greenland. Upper left: False color RGB composite using MODIS band 1
(0.65 µm) for red, band 6 (1.6 µm) for green, and band 32 (12 µm) for blue. Upper right: 11
µm brightness temperature, note the thick ice clouds with very low temperature (≈ 220-240
K) in circled areas. Lower left: The MOD35 C6 cloud mask. Lower right: The C1 cloud
mask.
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more false clouds compared to the middle part of the year. Since the atmosphere over the
Greenland plateau can become very dry with large variations in specific humidity during
Spring and late Autumn [Ettema et al., 2010], use of a fixed atmospheric profile (Sub-Arctic
Winter) may account for the higher false cloudy rate in these seasons. However, a small
grain size due to surface frost or diamond dust near the snow surface [Grenfell & Warren,
1999b], and the effect of surface roughness (sastrugi) under large solar zenith angles [Warren
et al., 1998; Kuchiki et al., 2011], may also contribute to the high false cloudy rate.
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Figure 29: C1 and MYD35 Collection 6 (MYD35 C6) vs. CALIOP over Greenland, 2007.

Table 14: C1 and MYD35 vs CALIOP in Greenland, 2007

Time period Total
matchups

MYD35
HRa

(%)

C1
HR
(%)

MYD35
TSSb

(%)

C1
TSS
(%)

Mar. 01 to May 15 535283 69.34 70.64 40.71 42.03
May 15 to Aug. 23 1291045 74.66 76.90 49.97 53.78
Aug. 23 to Oct. 31 289405 73.69 74.34 42.21 42.44

Overall 2115733 73.18 74.96 47.08 49.76

3.1.3 Cross comparison of C1 using MODIS Terra and Aqua data

As mentioned above, the C1 algorithm is designed for SGLI implying that tests using MODIS
Terra data would be the best way to assess its performance on data to be collected with the
SGLI sensor since both sensors have the 1.64 µm band available. However MODIS Terra
cannot be collocated with CALIOP so there is no direct way to evaluate the performance
of C1 using the 1.64 µm channel. As a substitute we compared the cloud fraction over
Greenland derived from C1 using both MODIS Aqua and Terra data. If the cloud fractions
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derived by C1 from the two sensors are close at the same time period of the year, then we
may consider it to be an indirect validation of the performance of C1 on MODIS Terra data.
Figure 30 shows the 4-day averaged (using data from day 1-4, 5-8, 9-12, etc.) cloud fraction
over Greenland in 2007. The cloud fraction is calculated as: fcld = Ncld/(Ncld +Nclr) where
Ncld is the total number of pixels classified as cloudy and Nclr is the number of pixels classified
as clear by the algorithm during that period. It can be seen that the cloud fractions derived
by C1 from the two sensors are generally very close throughout the entire year, indicating
that the performances of C1 using the 1.64 µm channel on MODIS Terra and the 1.24 µm on
MODIS Aqua are comparable. Larger difference is observed in the Spring season as Terra’s
cloud fraction is lower than that of Aqua by about 5%, which may be related to the high
false cloudy rate obtained when using MODIS Aqua data as discussed in Section 3.1.2. Since
the higher degree polynomials needed for interpolation of the 1.24 µm channel on Aqua may
introduce larger error in our algorithm, we consider the results obtained from Terra data to
be closer to the actual cloud fraction in the Spring season.
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Figure 30: C1 derived 4-day averaged cloud fraction over Greenland, 2007.

3.1.4 Summary

Multi-spectral satellite instruments like AVHRR, MODIS and VIIRS provide high spatial
resolution observations over the entire Arctic region. Their data products can be used to
derive useful information such as cloud fraction and distribution, snow/ice coverage, surface
temperature etc. which will help us better understand Arctic climate and its variability. An
accurate cloud mask over the Arctic region is critical in order to obtain reliable products
from satellite data. The traditional methods include thermal IR based cloud tests (BT6.7,
BTD3.7−11 etc.) and reflectance-based cloud tests (employing combinations of VIS/SWIR
tests with simple solar/viewing geometry correction). Water vapor bands like the 7.2 µm
band and the carbon dioxide band at 14.2 µm are also applied to provide additional infor-
mation. In some of these studies radiative transfer calculations were performed to determine
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the cloud screening thresholds by simulating different kinds of clouds for a variety of different
atmospheric and surface conditions in the Arctic.

The C1 algorithm is developed specifically for the SGLI sensor, which has very few
thermal IR channels available. A cloud screening scheme that mainly uses the reflectance
of two SWIR channels is established. Compared to other reflectance-based cloud screening
methods the thresholds of our method are dynamically determined by the solar/viewing
geometry for each satellite pixel based on comprehensive radiative transfer calculations that
take into account (snow) surface BRDF, surface elevation and the atmospheric profiles of
scattering/absorbing molecules. Compared to the traditional thermal IR based methods our
scheme has the following advantages:

1. The thresholds are less sensitive to the drastic temperature changes and frequent tem-
perature inversions occurring in the Arctic.

2. The reflectance thresholds are based on computed snow surface reflectance rather than
cloud properties since it is difficult to simulate every possible cloud configuration that
may occur under complex atmospheric and surface conditions in the Arctic.

3. A smaller number of satellite channels is required for desirable performance. Sensors
with no water vapor and carbon dioxide channels should be able to benefit from a
cloud mask similar to C1.

The validation of our cloud masking scheme was performed using data from MODIS
Terra, Aqua and CALIOP over Greenland in 2007. The image-based tests show that our
algorithm improves the detection of cold ice clouds and cloud edges compared to the thermal
IR based MODIS Cloud Mask algorithm. Statistical validation with CALIOP on MODIS
Aqua data shows that our C1 cloud mask generally has a higher hit rate and a higher TSS
score than the MODIS cloud mask. The cloud fraction derived using MODIS Terra and Aqua
data shows that the two configurations of our algorithm using different SWIR channels (1.64
µm and 2.13 µm for MODIS Terra data, 1.24 µm and 2.13 µm for MODIS Aqua data) lead
to consistent performance. More work is needed for the early Spring and late Autumn over
Greenland since a higher false cloudy rate is observed. Appropriate profile information of
the atmospheric absorption for each SWIR channel may be required because a fixed model
atmosphere is expected to provide an inadequate representation of the atmospheric condi-
tions over Greenland in all seasons. This problem may be addressed by using surface specific
humidity data from the AWS sites on Greenland to correct the standard model atmosphere.
Results from the water vapor channels of MODIS would also be helpful. Another possi-
ble source of error might be the presence of optically thin ice clouds (τ = 0.1 - 0.5) over
Greenland in these seasons which presents a challenge to C1 and other reflectance-based
cloud mask algorithms. As indicated by our model calculations the reflectances of these
clouds depend strongly on the ‘background’ surface reflectances and detailed simulations us-
ing well-defined surface properties (like snow with different grain sizes) might be a good way
to proceed. Other possible sources of mis-classification include surface frost, diamond dust,
sastrugi and surface slope. Data from the VIIRS instrument, which has SWIR channels very
similar to those of SGLI, and which can be collocated with CALIOP observations, would be
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very useful for further assessment of the performance of our C1 algorithm. Our existing test
and validation framework can easily be adjusted for application to VIIRS data.

3.2 Application and validation of the C2 algorithm

3.2.1 Comparison with GLI algorithms and field measurements

We compared the SGLI algorithm results with the GLI algorithm for the same MODIS
images. All these MODIS images corresponded to field measurement data. Aoki et al.
[2007a] describe in some the detail the snow pit work for all the field data. For each snow
pit work site, we calculated all the satellite pixels within 1 km circle, and then we used
the averaged retrieval data of these pixels to compare with the field measurements. The
purposes of our work here are (1) to validate our new SGLI algorithm including retrieval
feasibility and accuracy, (2) to compare with GLI results to highlight improvements, and (3)
to discuss how to improve the next version of this algorithm. Figure 31 shows the snow grain
size comparison. The SGLI algorithm retrieval results are shown in the top panels and GLI
results in the bottom panels. Both first layer (left panels) and second layer (right panels)
snow grain sizes were compared with the field measured data. The field measurements have
the measured grain size range, so we plotted the measurement range here for comparison.
From Fig. 31 we see that SGLI has more data, which means that the SGLI algorithm retrieved
all available MODIS pixels around the field measurement site. But for the GLI algorithm
the retrieval failed for some of these pixels. Thus, the SGLI algorithm has a much better
retrieval capability than the GLI algorithm. This superior performance could be due to the
fact that the SGLI algorithm is based on a nonlinear inverse method which uses the radiance
in all channels simultaneously. We used different colors to indicate the data for different snow
pit sites, as well as wet snow and dry snow marked by “*” and “o”. Most retrieved snow
grain sizes lie in the measurement range, but the performance is better for dry snow than
for wet snow. For wet snow, actually that is the case in Nakashibetsu. As we discussed in
Section 4.2, due to high reflectance from a “sun crust” surface, we got underestimated grain
size for the top layer and overestimated grain size for the bottom layer.
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Figure 31: Snow grain sizes retrieved from the SGLI algorithm (top) and the GLI algorithm
(bottom) compared with field measurements. Left: first layer grain size versus 0 − 0.5
cm layer field measurements. Right: Second layer grain size versus 0.5 − 5 cm layer field
measurements.
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Figure 32: Snow impurity concentrations retrieved from SGLI algorithm (top) and GLI
algorithm (bottom) compared with field measurements. Left: retrieved impurity versus
measured total carbon. Middle: retrieved impurity versus measured total impurity. Right:
equivalent dust impurity vs. measured total impurity.

Figure 32 shows the snow impurity comparison. As for the snow grain size, the SGLI
results are shown in the top panels, and the GLI results in the bottom panels. In the snow
model, the snow impurity concentration is assumed to be the same in both snow layers. We
compare with the field measured averaged (0 - 5 cm) impurity data, and the snow impurity
is assumed to consist exclusively of black carbon. In the in-situ snow pit work, the main
composition of snow impurity was found to be mineral dust [Aoki et al., 2007a]. Since
the spectral dependence of these two components are different in the visible, the results
cannot be compared directly. In Fig. 32, left panels, we compare the retrieved impurity
with the measured total black carbon part only, and we note that there is an overestimation
of the retrieved impurity concentration. If we compare with the total measured impurity
concentration which include both black carbon and mineral dust (middle panels of Fig. 32),
the retrieved impurity shows an underestimation. Considering the difference between mineral
dust and black carbon, and noting that mineral dust has about 10 times the effect of black
carbon, we may convert the retrieved soot (black carbon) amount to an equivalent dust
amount (right panels of Fig. 32), and then we get good agreement with the total measured
impurity concentration. The SGLI and GLI algorithms yield similar results except that SGLI
algorithm gets more retrievable pixels. We also noticed that for wet snow over Nakashibetsu,
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Figure 33: Snow parameter retrievals: Terra MODIS images over Greenland, Day 170, 2005.

the retrieved snow impurity is questionable too. We will test different snow impurity types
and mixing conditions in our next version of the impurity retrieval algorithm, as well as the
wet snow condition.

3.2.2 Application to MODIS data

We retrieved three snow physical parameters: the snow grain size in the top layer and a
lower layer as well as the snow impurity concentration. MODIS data were used to test
our algorithms. We found the 1.64 µm band to be sensitive to altitude and humidity, so
we used the 1.24 µm band instead of the 1.64 µm band in the snow parameter retrievals.
Since our retrieved snow parameters are unique and not available as standard products from
MODIS or other similar sensors, a direct comparison is not possible. Availability of ground-
based measurement data of snow grain sizes and impurity concentrations for validation
purposes is very limited too. However, we may use the retrieved snow grain size and impurity
concentrations to compute the broadband albedo, which is generally available from satellite
data as well as from ground-based measurements. Because our albedo is calculated from the
retrieved snow parameters, the albedo validation can be regarded as an indirect validation
of the retrieved snow parameters. Figure 33 shows retrieved snow and aerosol parameters
for day 170, 2005. Corresponding results derived from Aqua MODIS data are very similar
and consistent with those derived from Terra MODIS data (see Fig. 38).

In year 2014, we made some improvements in the snow parameter retrieval algorithms.
First, we added the elevation correction to the satellite measured radiances. This correction
will improve the retrieval over high altitude areas, such as Greenland and Antarctica. Second,
we changed the 1.64 µm (MODIS 1.63 µm) channels to 1.05 µm (MODIS 1.24 µm) channel
for snow retrieval, because the 1.64 µm channel is too sensitive to changes in elevation and
humidity. Third, this year we have greatly improved the cloud mask and surface classification
algorithm. This improvement is also a big benefit to snow parameter retrievals, since cloud-
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contaminated pixels and sea-ice pixels will cause unreasonable snow retrievals. The quality of
cloud mask and surface classification is playing a significant role in the snow/ice parameters
retrieval.

In order to quantify these improvements, we re-examined a MODIS image over Greenland
obtained in 2005. Using snow direct albedo, we assessed the quality of retrieved snow
parameters. Figure 33 is an example for MODIS Terra data on day 170 of 2005. In Fig. 34
we compared the retrieved indirect albedo and direct albedo from 2 different versions of our
algorithm. The top row shows results obtained from the version available in March 2014, and
bottom row corresponding results obtained from the improved version of June 2014. The left
column shows the direct albedo, the middle column shows the direct albedo, and the right
column shows the absolute relative difference between the 2 albedo values. In the March
2014 version, the cloud mask had some improvements, but the surface classification was not
updated yet. We can see that at the edge of the Greenland ice sheet, there are some bare
ice pixels with low values of the direct albedo, not reflected in the indirect albedo, because
the algorithm falsely retrieved them as “snow pixels”, which led to incorrect albedo values.
By June of 2014, we had upgraded the cloud mask and surface classification algorithm,
and the elevation correction had also been included in snow retrieval algorithm. In this
current version, the indirect albedo and the direct albedo results are very close. Hence, from
this direct albedo comparison, we infer that there is a significant improvement in our snow
parameter retrievals. Figure 34 is just one example. Retrievals obtained for the whole year
show similar results.
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Figure 34: Snow parameter retrievals: Quality check for Terra MODIS images over Green-
land, Day 170, 2005 by using different versions of cloud mask, surface classification, and
snow retrieval algorithms. Top: for the version of March 2014; Bottom: for the improved
version of June 2014. Left: indirect albedo; Middle: direct albedo; Right: absolute relative
difference (%).

In year 2015, we updated our snow model by using the non-spherical Voronoi particle
model instead of the spherical particle model. We did a comparison of modeled BRDFs
with NASA aircraft CAR measurements over Barrow, Alaska in 2008 (see Fig. 14). This
comparison showed that the BRDF produced by the use of a Voronoi particle model is
much closer to the measured snow BRDF than the one obtained from the use of a spherical
particle model. There is a significant improvement in the phase function shape of Voronoi
particles, which lacks the rainbow patterns produced by a spherical particle model. In order
to correctly use the Voronoi particle phase function, we used a delta-fit technique to get a
smooth phase function (see section 2.2.1 and 2.4). In Figs. 35 and 36, we show 2 cases of
snow retrievals, one based on a spherical snow model and the other on a non-spherical snow
model. These figures clearly show the big improvement obtained from use a Voronoi particle
model. The number of retrievable pixels increased by more than 20%. The image looks more
smooth and the retrieved aerosol values are more reasonable.
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Figure 35: Snow parameter retrieval over Greenland from a spherical particle model (top
panels), and from a Voronoi particle model (middle panels). The bottom row shows com-
parison of the retrieved number of pixels.
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Figure 36: Saimilar retrieval as in Fig. 35 for a MODIS image over Greenland on day 191 of
2008.
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Figure 37: Snow broadband albedo and surface temperature validation against GC-NET
AWS data for year 2005 in Greenland. From left to right: Summit, Tunu-N, NASA-E,
Swiss-camp.

3.2.3 Snow albedo and temperature – comparisons with field measurement data

Snow/ice “particle” size and impurity concentration products are new products for EOS.
One could use field measurements to validate the retrieved snow/ice “particle” size and
impurity concentration [Aoki et al., 2007b], but the sparsity of field data, which may be
available only for a few days of the year at a few locations, represents a significant limita-
tion. However, field albedo measurements are relatively abundant and data sources like the
Greenland Climate network (GC-NET) provide important surface measurements including
air temperature, wind speed, wind direction, humidity, pressure, snow depth and albedo
from 18 automatic weather stations (AWS) in Greenland. We will compare the field mea-
sured albedo with the retrieved albedo by our snow/ice albedo product. This comparison
will serve as an indirect validation of our snow/ice physical parameter products such as the
“particle” size and impurity concentration. Figure 37 shows some preliminary validation
results with GC-NET AWS data for surface short-wave broadband albedo and temperature
during year 2005. MODIS Terra data have been used by our algorithm (referred to as the
SIT algorithm hereafter) to derive the surface albedo. The results show general agreement
of the retrieved surface albedo and temperature with the field measurement.

Another limitation of the field measurement data is that they are obtained at one par-
ticular location and do not allow for validation of snow/ice parameter retrievals over large
areas. In view of this space-time sparsity of field measurements and the critical need for
validations, we propose to use the MODIS/VIIRS broadband albedo products to achieve
this goal. Figure 38 shows a preliminary comparison between our albedo product with the
MODIS MCD43B3 1 km albedo product using MODIS images between June 2 and 10, 2005
over Greenland. In this comparison, we configured our SIT algorithm to retrieve albedo only
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for snow pixels, so that land and ice pixels on the melted and melting part of Greenland are
not included in our results. Figure 38 shows that there is basic agreement and we will refine
it into a pixel by pixel comparison for quantitative and statistical validation.

Figure 38: Albedo retrieval compared to MODIS MCD43 surface albedo between June 2
and 10, 2005 over Greenland. Upper panels: MCD43; Lower panels: SIT algorithm. From
left to right: retrieved albedo for VIS (0.3-0.7 µm), NIR (0.7-2.8 µm) and SW (0.3-2.8 µm)
wavelength ranges.

3.2.4 Summary

In JFY 2015, we completed the 3-year project. There were several improvements, upgrades
and tests. The most important results obtained this year may be summarized as follows:

1. We acheived a very significant improvement in the cloud mask. The upgraded algo-
rithm has been validated by use of CALIOP data, and shown to have better perfor-
mance than the MODIS algorithm.

2. The surface classification algorithm has also been upgraded, especially for the sea
ice/water and snow-covered sea ice/bare sea ice separation. The dynamic threshold
method will also improve the accuracy of classification under different solar/viewing
geometries.

3. A non-spherical Voronoi particle snow model has been implemented in the snow re-
trieval algorithm. A comparison of snow BRDFs obtained from model simulations
and NASA CAR measurements shows that the BRDF produced by a Voronoi particle
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model is closer to the measured snow BRDF than the one produced by a spherical par-
ticle model. Further, MODIS-retrieved snow parameters based on a Voronoi particle
model are more accurate than those based on a spherical particle model.

4. Using response functions for the SGLI channels, we generated snow/ice surface tem-
perature retrieval tables for the SGLI sensor, as we did for MODIS. The new tables
have been implemented in the SGLI snow retrieval code.

5. We did a sensitivity study to explore the possibility of improving aerosol retrievals
over snow by using the SGLI polarization channels. The results show that when the
scattering angle is less than 90 degrees, the polarized reflectance could be used to
distinguish effects of aerosols from those of snow impurity. The SGLI polarized sensor
orbit direction design satisfy this condition. So use of polarized SGLI measuremenst
could lead to improved aerosol retrievals over snow. We will continue this work in the
next 3-year project.

6. In the next 3-year RA6 project, we will continue to study the non-spherical particle
snow model and compare results with field measurements. Also we will explore the
benefits obtained by using SGLI polarized channels and multiple angle measurements
in snow retrievals. After SGLI launch, we will work on testing of the snow/ice products
and further validations.
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