# Algorithm Theoretical Basis Document

# GCOM-C/SGLI Level-3 Map (G7A)

31 March 2017

Masahiro Hori

Japan Aerospace Exploration Agency

### Contents

- 1. Introduction
- 1.1 Objectives
- 1.2 Development strategy
- 1.3 Processing targets

### 2. Theoretical Description

- 2.1 Processing flow
- 2.2 Statistics
- $2.3 \ QC \ process$
- 2.4. Sample images
- 3. Current status and remaining issues

#### 1. Introduction

#### 1.1 Objectives

The objective of the G7A algorithm is to make map-projected images of the SGLI Level-3 (L3) spatially- or temporally- binned geophysical variable (GV) products. Map projection is the equirectangular (EQR) projection for all products and only for cryosphere products polar stereographic (PS) projection is also available. The spatial resolutions are kept the same as the input.

#### 1.2 Development strategy

The G7A algorithm is designed to use a same program code for making map-projected images of all GVs in order to make the maintenance of the code simple. Basically the output of the G7A processing contains map projected spatial and temporal average (AVE) of GV except for the case of snow and ice cover extent (SICE) and cloud type (CLTYPE) in cloud properties (CLPR) product (see next sub-section). The SICE and CLTYPE are flag products and the outputs of these two GVs are customized so that the ratio of the number of snow/ice cover observation or cloud type to the number of total observations within each bin is calculated. Finally, to make the addition or deletion of processing target GVs quite easy, the GV names of the processing targets are defined in an external text file so that the change could be made without compiling the code.

#### 1.3 Processing targets and outputs

Processing targets of the L3 Map algorithm (G7A) are all SGLI products for land, cryosphere, ocean, and atmosphere. Input and output variables are summarized in Table 1.

| Input<br>Product ID | Long Name                   | Geophysical<br>Variables (GVs) | Output<br>Product ID | Output<br>Variables <sup>*1</sup> |
|---------------------|-----------------------------|--------------------------------|----------------------|-----------------------------------|
| RV01                | Land surface<br>reflectance | Rs_VN01                        | RV01                 | AVE, QA_flag                      |
| RV02                |                             | Rs_VN02                        | RV02                 | Same as above                     |
| RV03                |                             | Rs_VN03                        | RV03                 | Same as above                     |
| RV04                |                             | Rs_VN04                        | RV04                 | Same as above                     |
| RV05                |                             | Rs_VN05                        | RV05                 | Same as above                     |
| RV06                |                             | Rs_VN06                        | RV06                 | Same as above                     |
| RV07                |                             | Rs_VN07                        | RV07                 | Same as above                     |
| RV08                |                             | Rs_VN08                        | RV08                 | Same as above                     |

Table. 1 List of the target products, GVs, and output types of the G7A processing

| DIVOO       |                                              | D UNIOO                                                                      | DIZOO       | 0 1           |
|-------------|----------------------------------------------|------------------------------------------------------------------------------|-------------|---------------|
| RV09        |                                              | Rs_VN09                                                                      | RV09        | Same as above |
| RV10        |                                              | Rs_VN10                                                                      | RV10        | Same as above |
| RV11        |                                              | Rs_VN11                                                                      | RV11        | Same as above |
| RS01        |                                              | Rs_SW01                                                                      | RS01        | Same as above |
| RS02        |                                              | Rs_SW02                                                                      | RS02        | Same as above |
| RS03        |                                              | Rs_SW03                                                                      | RS03        | Same as above |
| RS04        |                                              | Rs_SW04                                                                      | RS04        | Same as above |
| RT01        |                                              | Rs_TI01                                                                      | RT01        | Same as above |
| RT02        |                                              | Rs_TI02                                                                      | RT02        | Same as above |
| <b>RN08</b> |                                              | Rs_VN08P                                                                     | <b>RN08</b> | Same as above |
| <b>RN11</b> |                                              | Rs_VN11P                                                                     | <b>RN11</b> | Same as above |
| RP01        |                                              | Rs_PI01                                                                      | RP01        | Same as above |
| RP02        |                                              | Rs_PI02                                                                      | RP02        | Same as above |
| GEOV        |                                              | Absolute_relative_<br>azimuth <sup>*3</sup><br>Sensor_zenith<br>Solar_zenith | GEOV        | Same as above |
| GEOP        |                                              | Absolute_relative_<br>azimuth_PL*3<br>Sensor_zenith_PL<br>Solar_zenith_PL    | GEOP        | Same as above |
| GEOI        |                                              | Absolute_relative_<br>azimuth_IR*3<br>Sensor_zenith_IR<br>Solar_zenith       | GEOI        | Same as above |
| NDVI        | Normalized<br>difference<br>vegetation index | NDVI                                                                         | NDVI        | Same as above |
| EVI_        | Enhanced<br>vegetation index                 | EVI                                                                          | EVI_        | Same as above |
| SDI_        | Shadow index                                 | SDI                                                                          | SDI_        | Same as above |
| LAI_        | Leaf area index                              | LAI                                                                          | LAI_        | Same as above |
| FPAR        | Leaf area index                              | FAPAR                                                                        | FPAR        | Same as above |
| AGB_        | Above-ground<br>biomass                      | AGB                                                                          | AGB_        | Same as above |
| VRI_        | Vegetation<br>roughness index                | VRI                                                                          | VRI_        | Same as above |
| LST_        | Land surface<br>temperature                  | LST                                                                          | LST_        | Same as above |
| SGSL        | Snow grain size of                           | SIST                                                                         | SGSL        | Same as above |

|        | shallow layer                                    |                |        |                                         |
|--------|--------------------------------------------------|----------------|--------|-----------------------------------------|
| SIST   | Snow and ice<br>surface<br>temperature           | SIST           | SIST   | Same as above                           |
| SICE   | Snow and ice cover extent                        | SICE           | SICE   | Stat (= N <sub>used</sub> ),<br>QA_flag |
| CFRX*2 | Cloud properties                                 | CLTYPE         | CFRX*2 | Stat (= N <sub>used</sub> ),<br>QA_flag |
| CLTT   |                                                  | CLTT           | CLTT   | AVE, QA_flag                            |
| CLTH   |                                                  | CLTH           | CLTH   | Same as above                           |
| COTW   |                                                  | CLOT_W         | COTW   | Same as above                           |
| CERW   |                                                  | CLER_W         | CERW   | Same as above                           |
| COTI   |                                                  | CLOT_I         | COTI   | Same as above                           |
| ΑΟΤΟ   | Aerosol optical<br>thickness over<br>ocean by NP | AROT_ocean     | ΑΟΤΟ   | Same as above                           |
| AOTL   | Aerosol optical<br>thickness over<br>land by NP  | AROT_land      | AOTL   | Same as above                           |
| AAEO   | Aerosol Angstrom<br>Exponent over<br>ocean by NP | ARAE_ocean     | AAEO   | Same as above                           |
| AAEL   | Aerosol Angstrom<br>Exponent over<br>land by NP  | ARAE_land      | AAEL   | Same as above                           |
| AOTP   | Aerosol properties<br>by PL                      | AROT_pol_land  | ΑΟΤΡ   | Same as above                           |
| AAEP   | Aerosol properties<br>by PL                      | ARAE_pol_land  | AAEP   | Same as above                           |
| ASSA   | Aerosol properties<br>by PL                      | ARSSA_pol_land | ASSA   | Same as above                           |
| SST_   | Sea surface<br>temperature                       | SST            | SST    | Same as above                           |
| PAR_   | photosynthetically<br>available<br>radiation     | PAR            | PAR_   | Same as above                           |
| L380   | nLw @ 380nm                                      | NWLR_380       | L380   | Same as above                           |
| L412   | nLw @ 412nm                                      | NWLR_412       | L412   | Same as above                           |
| L443   | nLw @ 443nm                                      | NWLR_443       | L443   | Same as above                           |
| L490   | nLw @ 490nm                                      | NWLR_490       | L490   | Same as above                           |

| L530        | nLw @ 530nm                      | NWLR_530 | L530         | Same as above |
|-------------|----------------------------------|----------|--------------|---------------|
| L565        | nLw @ 565nm                      | NWLR_565 | L565         | Same as above |
| L670        | nLw @ 670nm                      | NWLR_670 | L670         | Same as above |
| <b>T670</b> | Taua @ 670nm                     | TAUA_670 | <b>T67</b> 0 | Same as above |
| <b>T865</b> | Taua @ 865nm                     | TAUA_865 | <b>T865</b>  | Same as above |
| CHLA        | Chlorophyll-a concentration      | CHLA     | CHLA         | Same as above |
| TSM_        | Total suspended matter           | TSM      | TSM_         | Same as above |
| CDOM        | Colored dissolved organic matter | CDOM     | CDOM         | Same as above |

\*1 AVE: Average of valid GV data, RMS: Root Mean Square of valid GV data, N<sub>used</sub>: Number of valid GV data actually used in the statistics, N<sub>input</sub>: Number of input GV data, Min: Minimum of valid GV data, Max: Maximum of valid GV data, Date: Dates of the SGLI observations during the 8-day or 1-month interval period, QA\_flag: Flag for quality assurance information, N<sub>snow1</sub>: Number of snow or ice cover, N<sub>snow2</sub>: Number of snow with vegetation or bare ice, N<sub>snow3</sub>: Number of melting snow

\*2 Input and output of CLTYPE statistics in the descending orbit is cloud fractions for individual cloud types. The "CFRX" denotes the cloud fraction of type "x" which is the ID number of the ISCCP cloud classification. For example, in case of "cirrus cloud" the ISCCP ID is "1" and thus the input variable named as "Ncfr1" is used to take temporal statistics and store them in the output file with product ID of "CFR1". In the ascending orbit cloud fraction is estimated for three layer of High, Middle, and Low, the results of which are stored as "CFRH or cfrh", "CFRM or cfrm", and "CFRL or cfrlh", respectively. In addition, cloud fraction considering all the cloud types are also calculated and generated with the ID of "CFRA" and "cfra" in the G5A and G6A processing.

\*3 Absolute relative azimuth angle (araz) is converted from sensor and solar azimuth angles by araz = | sensor\_azimuth - 180.0 - solar\_azimuth | and then its statistics (AVE, RMS, MAX, MIN) are calculated and stored in the output file of the G5A processing.

Basically (except for the case of flag products (SICE and CLTYPE)) the statistics variables stored in the input files are the eight values or flag of Ave, RMS, N<sub>used</sub>, N<sub>input</sub>, Min, Max, Date, QA\_flag (see ATBD of G5A and G6A). When processing the flag products, the statistics of Ave, RMS, Min, and Max are not taken. Instead, only snow/ice or cloud counts are stored in the input file.

#### 2. Theoretical Description

#### 2.1 Processing flow

Figure 1 indicate the flow of the G7A L3 Map projection processing. Spatial resolutions are kept the same as the input without projection. The output of G7A processing contains global EQR projected map image of AVE (PS projected images of Northern Hemisphere and Southern Hemisphere are also available only for cryosphere products).

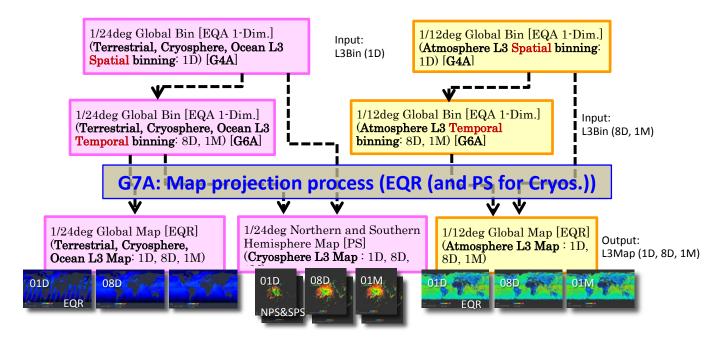



Fig. 1 Flow of the G7A L3 Map projection processing

2.2 Definition of the statistics employed in the G5A and G6A processing

Equations for calculating "AVE" and "RMS" are the followings;

AVE = 
$$\frac{1}{n}\sum_{i} xi$$
  
RMS =  $\sqrt{\frac{1}{n}(\sum_{i} xi^{2})}$ 

Where n is the total number of observation days with valid GVs, xi is the daily value of a GV to be processed.

" $N_{used}$ " is the number of valid GV data actually used in the statistics, whereas " $N_{input}$ " is the number of all the input GV data.

"MIN" and "MAX" are the minimum and maximum of valid GVs data during the temporal interval.

"Date" is an 8-bit value storing the dates of SGLI observations used in the statistics calculation. For example, when the Date value is 40 (i.e., 101000), then SGLI observations of 4<sup>th</sup> and 6<sup>th</sup> days in the temporal interval are used in the statistics.

#### 2.3 QA process

"QA\_flag" currently stores flags for discriminating land and water. In future update, QA information for GVs will be included.

## 2.4. Sample images

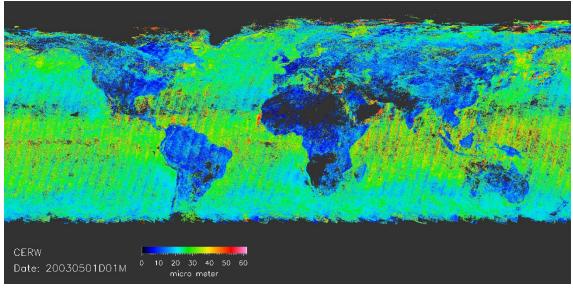



Figure 2 show sample images of L3 Map projection.

Fig. 2a L3 map image of water cloud effective radius (CERW)

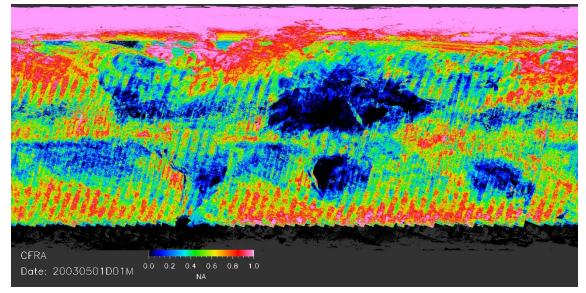



Fig. 2b L3 map image of cloud fraction of all type (CFRA)

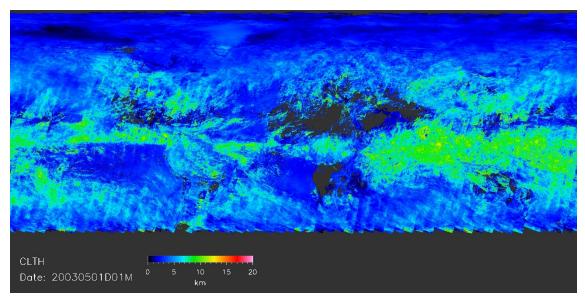
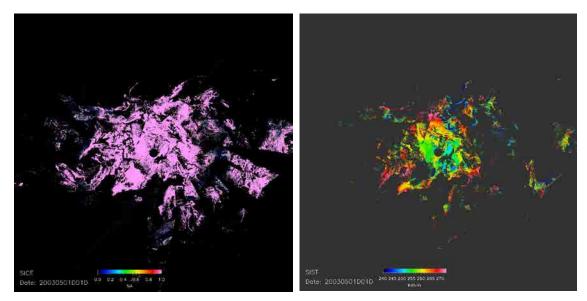




Fig. 2c L3 map image of cloud top height (CLTH)



. Fig. 2d (left) &2e (right) L3 map image of snow and ice cover extent (left: SICE) and snow and ice surface temperature (right: SIST) in the Northern Hemisphere

3. Current status and remaining issues of the G7A code implementation

The G7A process works well without system errors. Processing speed and memory size are also within the expectations. Remaining tasks are the implementation of the QA\_flag for the output of quality assurance information.

Appendix 1: Equations for polar stereographic projection

Geographic coordinate (latitude:  $\phi$ , longitude:  $\lambda$ ) are calculated from map coordinates (horizontal: u, vertical: v) with the following equations,

$$\phi = \text{NS} \cdot \left(\frac{\pi}{2} - 2 \tan^{-1} \left(\frac{\sqrt{\nu^2 + u^2}}{R}\right)\right)$$
Eq. (1)

where NS is a north-south identification factor (1 for northern and -1 for southern),  $\lambda_0$  is the standard longitude (the longitude line which is parallel to the grid's y-axis (v-direction), along which latitude increases), and R is a scale factor (1000).

Fig. A1 indicates the map coordinates of the four corners (not the center of the pixel but the corner of the pixel) of a Northern PS projected image. Spatial resolution is 1/24 deg. The array size is 3500 pixels  $\times 3500$  lines.

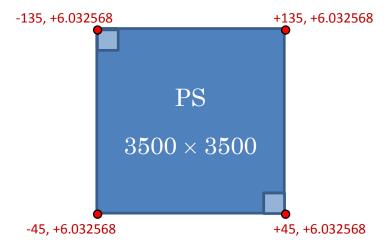



Fig. A1 Map coordinates of the four corners of the polar stereographic projection area.



For comparison purpose, Fig. A2 indicates the map coordinates of an EQR image.

Fig. A2 Map coordinates of the four corners of the equirectangular projection area.