Algorithm Description Ver.1.1 (2016.12.19) Algorithm Description Ver.1.2 (2019.3.31)

PI No. 134 Takafumi Hirata (GCOM-C/SGLI Ocean Team) CIs: Yohei Yamashita

Derivation of the absorption coefficient of Colourd Dissolved Organic Matter (CDOM) 1. Physics of the problem

The IOP algorithm assumes that the remote sensing reflectance (R_{rs}) *just above the sea surface* (denoted by z=0+, where z represents a depth), or the water-leaving reflectance (ρ), is obtained in prior to its implementation.

The R_{rs} for a wavelength λ is defined by

$$R_{rs}(\theta_{v}, \phi_{v}, z=0+, \theta_{s}, \phi_{s}, \lambda) = L_{w}(\theta_{v}, \phi_{v}, z=0+, \theta_{s}, \phi_{s}, \lambda) / E_{d}(z=0+, \theta_{s}, \phi_{s}, \lambda)$$
(1)

where L_w and E_d are the radiance and the downward plane irradiance at the observation angle (zenith angle θ_v , azimuth angle, φ_v) and the solar angle (zenith angle θ_s , azimuth angle φ_s). The water-leaving reflectance ρ can be obtained by $\rho = \pi R_{rs}$. Morel and Gentili (1993, 1996) showed that the Eq. (1) can be related to the absorption coefficient a_t and the backscattering coefficient of the bulk water b_{bt} by

$$R_{rs} (\theta_v, \phi_v, z=0+, \theta_s, \phi_s, \lambda) = R (W, \theta_s, \phi_s, \lambda) F(\theta_v, \phi_v, z=0-, \theta_s, \phi_s, \lambda) [b_{bt}(z=0-, \lambda)/a_t(z=0-, \lambda)]$$
(2)

where R is a transmittance from water to air and W denotes the wind speed. For convenience, all dependencies of the variables on illumination and observation geometries, depth, wavelength etc in Eq. 2 are omitted hereafter, unless otherwise specified. In addition, R x F will be denoted by F' so that Eq.2 is simplified by

$$\mathbf{R}_{rs} = \mathbf{F}' \left[\mathbf{b}_{bt} / \mathbf{a}_t \right]. \tag{3}$$

The absorption coefficient of the bulk seawater is decomposed into the absorption coefficients of optically active components. It is a common exercise to define those components as pure seawater (a_w) , phytoplankton (a_{ph}) , non-algal particles NAP (a_d) , and CDOM (a_g) , so that

where

 $a_{dg=}a_d+a_g$

Among the components, a_{ph} and $a_d+a_g(=a_{dg})$, thus not a_d and a_g , can be derived from the SGLI/GCOM-C1 IOP algorithm (see Smyth et al., 2006 as well as ATBD for IOPs). Hence, we assume that a_{dg} are known in this document. A Practical problem here is to decompose a_{dg} into a_d and a_g to retrieve a_g .

2. Dataset

A global in situ dataset was used (Werdell and Bailey 2005) to derive a_g from a_{dg} . Figure 1 shows the data distribution of the dataset.

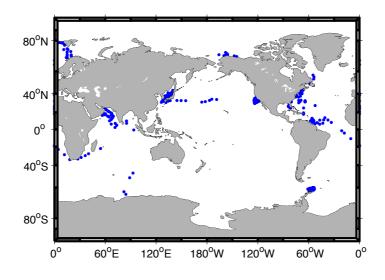


Figure 1 NOMAD data distribution

3. Algorithm

Since the IOP algorithm retrieves a_{dg} at 412, 443 and 490 relatively well than other longer wavebands, the former wavelengths will be considered below. From Eq. 5, we have:

$$\mathbf{a}_{\mathrm{g}} = \mathbf{a}_{\mathrm{dg}} - \mathbf{a}_{\mathrm{d}} \tag{5}$$

Considering that adg varies orders of magnitude over global scale and that adg derived from the IOP

(5)

model would include some uncertainty in practice, we assume that there is the following relationship between a_{dg} measured in situ (a_{dg} (measured)) and a_{dg} derived from the IOP model (a_{dg} (measured)) so that

$$\log_{10}(a_g \text{ (measured)}) = g^* \log_{10}(a_{dg} \text{ (derived)}) + h$$
(7)

where g and h are a slope and an intercept obtained from a comparison between $log_{10}(a_g \text{ (measured)})$ and $log_{10}(a_{dg} \text{ (derived)})$ and depends also on instrument used to obtain $log_{10}(a_{dg} \text{ (derived)})$ (if it is a satellite or in situ instrument).

Figure 2 shows a comparison between a_g measured in situ (a_g (true)) and derived from Eq. 7 (a_g (reproduced)), using the a_{dg} derived from the IOP algorithm that was applied to the in situ radiometry coincided with a_g (true).

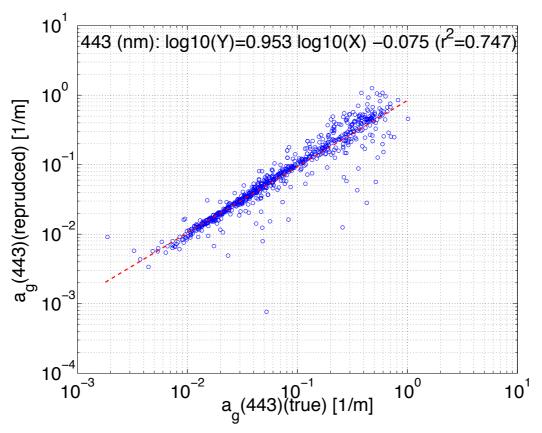


Fig. 3 Relationship between ag(443nm) measured in situ and derived(reproduced) using Eq. 7.

Reference:

Smyth, T. J., G.F. Moore, T. Hirata, J. Aiken, Semianalytical model for the derviation of ocean

colour inherent optical properties: description, implementation, and performance assessment, Applied Optics, 45, 8116-8131, 2006.

Werdell, P. J. and S. W. Bailey, An improved in situ data set for bio-optical algorithm development and ocean color satellite validation, Remote Sens. Environ., 98, 122-140, 2005