January 16, 2014, JAXA Joint PI Workshop, Tokyo

RIKEN

Ensemble-based Data Assimilation of TRMM/GPM Precipitation Measurements

PI: Takemasa Miyoshi

RIKEN Advanced Institute for Computational Science <u>Takemasa.Miyoshi@riken.jp</u>

K computer

Co-ls: H. Tomita (RIKEN), M. Satoh, M. Sawada (U. Tokyo), and E. Kalnay (U. Maryland)

Researcher: K. Terasaki (RIKEN)

Student: G.-Y. Lien (U. Maryland)

Data Assimilation (DA)

Data assimilation best combines observations and a model, and brings synergy.

Project Overview

Local Ensemble Transform Kalman Filter (*Hunt et al. 2007*)

Goal: Look for most effective use of TRMM/GPM precipitation measurements.

Research plans

FY2013 List of Achievements

- NICAM-LETKF prototype system developed
 - Successfully tested with perfect-model OSSEs
- Real observations successfully assimilated
 - NCEP PREPBUFR
 - Reasonable performance with Glevel-6 (112 km) and Glevel-7 (56 km) resolutions
- Precipitation assimilation methodology explored (U. Maryland)
 - A conceptual paper published (*Lien et al. 2013*)
 - TRMM-based precipitation product (TMPA) successfully assimilated with GFS-LETKF

NICAM-LETKF

Numerical Weather Prediction (NWP)

time

We consider the evolution of PDF

Flow chart of DA

Flow chart of DA

NICAM-LETKF Prototype

Results from perfect-model OSSE

With real observations (Initial: Day 0)

With real observations (Day 1)

With real observations (Day 5)

With real observations (Day 20)

LETKF analysis is more suitable to NICAM.

PRECIP ASSIMILATION

Challenges of precip. assimilation

- Previous studies (e.g., *Tsuyuki 1996*; *Mesinger et al. 2006*) succeeded in forcing the model precipitation to be close to the observed values.
- However, the model forecasts tend to lose their additional skill after a few forecast hours.
- Major difficulties (Bauer et al. 2011):
 - 1. Linear representation of moist physical processes for variational data assimilation
 - 2. Non-Gaussianity of precipitation variable

An approach to precip. assimilation

- Major difficulties (Bauer et al. 2011):
 - 1. Linear representation of moist physical processes for variational data assimilation
 - 2. Non-Gaussianity of precipitation variable
- Approach
 - 1. Using LETKF (or other EnKF methods) avoids linear representation of moist physics.
 - 2. Applying empirical Gaussian transformation
 - 3. Considering background PDF (requiring precipitating members)
- Lien et al. (2013) tested the approach and obtained promising results.

Lien, G.-Y., E. Kalnay, and T. Miyoshi, 2013: Effective Assimilation of Global Precipitation: Simulation Experiments. *Tellus*, **65A**, 11915.

Most recent results from Guo-Yuan Lien and Eugenia Kalnay

REAL TMPA AND GFS-LETKF

Lien and Kalnay succeeded in assimilating TMPA.

3-month time series: Analysis U (m/s) at 500 hPa, error relative to ERA-int.

5-day forecasts were improved.

2-month average U at 500 hPa

Solid lines: RMS error Dashed lines: Bias

What did we do?

• Improved QC – Corr[TMPA, GFS] > 0.45

Requiring background 24 members are raining (out of 32)

ENSEMBLE-BASED OBS IMPACT

Kunii, Miyoshi and Kalnay (2012, *Mon. Wea. Rev.*)
Kalnay, Ota, Miyoshi and Liu (2012, *Tellus*)
Ota, Kalnay, Miyoshi and Derber (2013, *Tellus*)

Forecast Sensitivity to Observations (FSO)

Degrading

With FSO approaches, observation impacts can be estimated without performing expensive data denial experiments (or OSEs).

Kunii, Miyoshi, Kalnay (2012) Improving

Impact of TMPA on GFS forecasts

Research plans

