Advancement of the DPR-L2 precipitation retrieval algorithm

Joint PI Workshop of Global Environment Observation Mission 2013 Jan. 16th, 2014 Shinta SETO (Nagasaki University)

Contents

For *the At-launch code* of the DPR-L2 algorithm

 Use of SRT in the dual-frequency retrieval algorithm (HB-DFR-SRT method)

For the post-launch code of the DPR-L2 algorithm

- NUBF correction (for the edge of rain area)
- Extrapolation for clutter region

Single-frequency algorithm

Single-frequency algorithm

Comparison of the four methods

r is range from the radar, *f* is frequency, α and β are dependent on rain types.

	Single-frequency	Dual-frequency
No SRT	HB method	HB-DFR method
	$k(r) = \alpha(r) Z_{e}(r)^{\beta}$	$k(r;f) = \varepsilon_D(r;f) \alpha(r;f) Z_e(r;f)^{\beta(f)}$
	$\varepsilon = 1$	$\mathcal{E} = \mathcal{E}_D$
With SRT	HB-SRT method	HB-DFR-SRT method
	$k(r) = \varepsilon_S \alpha(r) Z_{\rm e}(r)^{\beta}$	$k(r;f) = \varepsilon_{S}(f) \varepsilon_{D}(r;f) \alpha(r;f) Z_{e}(r;f)^{\beta(f)}$
	$\mathcal{E} = \mathcal{E}_S$	$\mathcal{E} = \mathcal{E}_{S} \mathcal{E}_{D}$

Test under ideal conditions

- The four methods are tested with simple synthetic dataset produced from TRMM/PR standard product 2A25 (orbit number 20675~20699)
 - No measurement errors in $\rm Z_m$ and No SRT errors
 - No noise (No lower limit of Z_m and no upper limit of PIA) and No clutter
 - When SRT is used, PIA by SRT is 100 % relied so that $PIA_{SRT} = PIA_{HB}$.
 - For liquid regions, different α is used for the retrieval from the synthetic data so that the true ε of KuPR is not vertically constant at each pixel.
 - Here, results are shown for the profiles with BB and 11 liquid-precipitation range bins.

HB method

€ (KuPR)

Rain rate

20131229s/Ku=-99/Ka=100 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4 20131229s/Ku=-99/Ka=100 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4

HB-SRT method

€ (KuPR)

Rain rate

20131228s/Ku=-99/Ka=100 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4 20131228s/Ku=-99/Ka=100 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4

HB-DFR method

€ (KuPR)

Rain rate

20131229s/Ku=-99/Ka=-99 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4 20131229s/Ku=-99/Ka=-99 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4

HB-DFR-SRT method

€ (KuPR)

Rain rate

20131228s/Ku=-99/Ka=-99 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4 20131228s/Ku=-99/Ka=-99 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4

To be improved

€ (KuPR)

Rain rate

20140112s/Ku=-99/Ka=-99 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4 20140112s/Ku=-99/Ka=-99 20675-20699 (L=10/10, R=1/10) BB=1 Type=9 4

Advantage of HB-DFR-SRT method among dual-frequency algorithms

- HB-DFR-SRT method is, as far as I know, unique dual-frequency algorithm which can satisfy both the top and bottom boundary conditions.
- HB-DFR method (and Iterative backward retrieval method) generally do not satisfy the bottom boundary condition.
- The backward retrieval method (e.g. Meneghini et al. 1997) generally does not satisfy the top boundary condition.

Summary; HB-DFR-SRT method

- satisfies the top and bottom boundary conditions.
- adjusts k-Z_e relation at each range bin.
- can be switched to <u>HB-DFR method</u> when SRT is unavailable.
- can be switched to <u>HB-SRT method</u> for singlefrequency measurement.
- has been installed into the *At-launch code* of the DPR-L2 algorithm.
- does not give the perfect vertical profile of rain rate even when Z_m and PIA are perfectly given.

When HB-DFR-SRT algorithm is used in the DPR-L2

- SRT is not perfect. → Hybrid method between the original k-Z_e relation and PIA by SRT.
- KaPR suffers from attenuation → "Z_e-constant" assumption for heavy attenuation region as well as clutter region.
- HB-DFR method may not work so well $\rightarrow \varepsilon_{\rm D}$ is between 0.8 and 2.0.
- Finally, rain rate is estimated not from DFR method but from k/Z_e method.

(Shota Hayashi, Nagasaki University) A study on NUBF correction

- In TRMM/PR 2A25, k follows gamma distribution. ${}^{\bullet}$ \rightarrow The same method can be applied in the DPR-L2.
- Here, considering the edge of rain area, rain rate \bullet takes two discrete values. (e.g. 0 mm/h or 10 mm/h)

 \rightarrow Correction factors are derived empirically.

$$k(r) = \varepsilon_{\text{nubf}} \alpha(r) Z_{\text{e}}(r)^{\beta}$$

 $\mathcal{E}_{\text{nubf}} = -0.1 \sigma_{\text{n}}^2 + 0.0387 \sigma_{\text{n}} + 1.0$

Extrapolation for the clutter region

- In the DPR-L2 algorithm, Z_{ρ} is assumed to be constant in the \bullet clutter region. But, the vertical change in Z_e may be dependent on environmental conditions.
 - Judging from precipRateESurface2, rain rate should increase in going downward over high mountains (orographic rainfall?)
 - precipRateESurface is <u>severely smaller</u> than precipRateNearSurface \rightarrow Ze-_____ constant assumption is inappropriate for non-liquid precipitation.

precipRateESurface2

Items to be installed in the DPR-L2

Improvement of HB-DFR-SRT

As soon as possible after the launch

- NUBF correction
- Improved extrapolation for the clutter region
- The direct use of delta-PIA estimated from DSRT
- More realistic k-Z_e relation for KaPR
- Improvement of scattering databases
- Weak rain reference method
- "Texture method"

After the observation data is accumulated to some extent

- Angle bin dependence correction
- Multiple scattering

Future Issue

Summary

- HB-DFR-SRT method has been developed and implemented in *the At-launch code* of the DPR-L2 standard algorithm. We would like to improve the vertical profile.
- NUBF correction has not been installed in *the Atlaunch code*, but we are preparing the code.
- In the clutter region, Z_e is assumed to be constant in *the At-launch code*. We are trying to improve the extrapolation method considering the environmental conditions.
- Though many improvements should be done after the launch, basically the retrieval algorithm (DSD & SLV modules) is ready for the launch, I believe.

Published in 2013

- Seto, S., T. Iguchi, T. Oki, 2013: The basic performance of a precipitation retrieval algorithm for the Global Precipitation Measurement mission's single/dual-frequency radar measurements. *IEEE Transactions on Geoscience and Remote Sensing*, Vol. 51, No. 12, pp.5239-5251.
- Seto, S., T. Iguchi, N. Utsumi, M. Kiguchi, T. Oki, 2013: Evaluation of extreme rain estimates in the TRMM/PR standard product version 7 using hightemporal rain gauge datasets over Japan. *SOLA*, Vol. 9, pp. 98-101.

Members

- PI: Shinta Seto (Nagasaki University)
- CI: Toshio Iguchi (NICT)
- CI: Tosiaki Kozu (Shimane University)
- CI: Taikan Oki (University of Tokyo)
- CI: Hyungjun Kim (University of Tokyo)
- CI: Tanvir Islam (NOAA)
- CI: Susumu Ogawa (Nagasaki University)

We also would like to acknowledge

- Other DPR-L2 members (Awaka, Kubota, Meneghini, Liao, Hanado, Higashiuwatoko, Yoshida, Urita, ...)
- Other JAXA people
- Students of Nagasaki University (Hayashi, Momosaki)