2014.01.16

Application of satellite based precipitation in Asian-African regions for flood simulation

Oliver SAAVEDRA^{1,2}, Masahiro RYO¹, Tomoo USHIO³, Kentaro TAKIDO¹, Kazuki TANUMA¹, Zuliziana SUIF¹, Ryosuke GOMAIBASHI¹ , Takuji KUBOTA⁴

2

ΤΟΚΥΟ

CON CON

Pursuing Excellence

- Dept. of Electrical, Electronic and Information Eng., Osaka Univ., Japan
- Earth Observation Research Center, JAXA

Floods in Asia and Africa

Floods in Asia and Africa

Flood prevention

In developed countries

Dam reservoir/Weir Embankment Dense rain gauge measurement Regional forecast system etc.

In contrast ...

In developing countries, such countermeasure facilities (HARD) are still poorly implemented due to monetary limitation. \Rightarrow Importance of system development (SOFT)

Dallynun, Lilallat

Floods in Asia and Africa

System development (SOFT) with satellite products

Short term (per flood event)
Lead time for evacuation act (time)
Detection of hazardous area (space)

Long term (decades) Analysis of flood characteristics for flood hazard mapping

Objectives

To investigate the applicability of Satellite Based Precipitation (SBP) in combination with local observation network to improve the spatial and temporal resolution of measurements in Asian and African river basins.

To evaluate SBPs from the hydro-meteorological perspective and applicability for flood management

Strategies

We plan to

- 1) Evaluate of SBP products at selected basins
- 2) Suggest different correction methods at basin and local scale for different tempo-spatial scales
- 3) Apply enhanced dataset as input for a <u>hydrological model</u> and compare simulated river discharge
- 4) Support flood risk assessment under different scenarios

Applications in Asian region Japan, Vietnam, Thailand, Mekong in African region Nile basin, Sinai peninsula

Test basins in Asia

	Tone in Japan	Huong in Vietnam	Mekong River		
Basin size (km ²)	16800	1500	795000		
Annual rainfall (mm)	1200	2800	2500		
Precipitation Product	GSMap_MVK, GSMap_gauge	GSMap_MVK, GSMap_gauge	GSMap_gauge		
Period	2006-2009	2006-2009	2000		
Time step	hh, dd, mm	6h, day	dd, mm		
Eval. approach	POD, FAR, R, Effect of PMW & IR	POD, FAR, R, RMSE, NSE, Bias	Bias		
Qsim with DHM	NA	ОК	ОК		
Temporal downscaling	NY	ОК	NY		

Tone River Basin, Japan Target area of evaluation

Area = 16830 km² (Buffered 20560 km²) No. of Obs. Gauges: 78 stations Annual average prec = 1300 mm Location of Tone River Basin (Buffered by 7 km)

Monthly Precipitation (Tone)

- Overestimation in summer
- Underestimation in winter

Comparison of Average Monthly POD and FAR from 2006-2009

FAR remains relatively stable, but there is an overall improvement on POD.

	MVK	Gauge			
POD	0.48	0.70			
FAR	0.33	0.32			
Annual avg. of POD and FAR					

Comparison of Linear Regression in Various Time Scale

Radar-AMeDAS(mm)

Daily Correlation error (R) close to 1 (=0.95)

Spatial distribution of POD

Overall improvement on POD

Low POD in the northwest: possibly due to snowfall in western Japan

Spatial distribution of FAR

Little difference in comparison of FAR

Distributed Hydrological Model Sub basin **Precipitation** Flow interval Basin Soil moisture condition **Discharge** Precipitation Transpiratio Drv Wet - Runoff Evaporation laver Soil surface laver Unsaturated laver Topography - Soil condition Land use Soil map $\frac{\partial h}{\partial t} = q_L$ Satellite image ∂Q Saturated layer $\overline{\partial x}$ **River routine model** Hill slope model

Huong River basin Target area of evaluation

Method for temporal downscaling

Huong

Simulation results Huong

18 flood events were targeted Evaluation indicator (NSE) showed significant improvement 0.33 → 0.63 improved 14 out of 18 flood cases

How can this method be used?

This temporal downscaling can be used at any basins where have low temporal precipitation data, but are affected by flush floods.

Ryo, Saavedra et al 2014, JHM

GSMaP_gauge Monthly precipitation 2000 - 2010

- Overestimation in August
- Underestimation in October and November

Precipitation 6hourly and daily Sep-Nov in 2006-2009

Tendency: underestimation

Accuracy: GSMaP_Gauge > MVK

Log-transformation shows the improvement clearly.

Precipitation evaluation scores

	6 hc	burly	daily	у	
	Gauge	MVK	Gauge	MVK	
RMSE	12.7	14.6	39.5	47.6	
correlation	0.74	0.69	0.80	0.76	
Bias	-0.29	-0.58	-0.29	-0.58	
POD	0.89	0.53	0.89	0.58	
FAR	0.27	0.16	0.10	0.07	
TS	0.67	0.48	0.81	0.56	
				. 1.	

(Threshold amount = $1.0 \text{ mm } d^{-1}$)

Discharge simulation with three types of precipitation inputs was conducted.

Discharge simulation with three types of precipitation inputs was conducted.

Discharge simulation with three types of precipitation inputs was conducted.

Discharge simulation with three types of precipitation inputs was conducted.

Discharge simulation evaluation scores

Tendency: underestimation

Correlation values do not become worse.

Slope of the regression of MVK reduced more than that of Gauge. \rightarrow Evaporation

Application in Mekong River Basin

Area = 795,000 km²

No. of Obs. Gauges: 65 stations Annual prec, Min = 1000 mm Max = 4000 mm Mean Discharge : 15,000 m³/s Max Discharge : 45,000 m³/s

Monthly precipitation April – December 2000

Daily Discharge simulation rain gauge, GSMaP

Day

Daily Discharge simulation rain gauge, GSMaP

Daily Discharge simulation rain gauge, GSMaP

Findings so far

- We achieved temporal downscaling daily \rightarrow 6h
- Statistical evaluation, GSMap_gauge > GSMap_MVK
 POD & FAR at Tone and Huong
- Significant improvement of the prec. estimation 10-100 [mm d⁻¹] and slight improvement at intensities (> 100 [mm d⁻¹])
- Timing of rising limbs (rapid increase of discharge, start of flooding) was captured very well.
- Underestimation tendency of peak discharge during floods
- Overall GSMap_MVK 's underestimation has been reduced by GSMap_gauge but still some bias can be found even overestimation
- Evaluation seems sensitive on the quality and density of obs prec

Publications

- Takido K., Tanuma, Ryo, M, <u>O. Saavedra</u>, T. Ushio, and K. Kubota: Tempo-Spatial Evaluation of a new Satellite Precipitation Product GSMaP_Gauge over Tone River Basin in Japan , *Journal of Japan Society of Meteorology*, under preparation.
- Ryo M., <u>O. Saavedra</u>, S. Kanae, and N. D. Tinh,: Temporal downscaling of daily gauged precipitation by application of a satellite product for flood simulation in a poorly gauged basin and its evaluation with multiple regression analysis, *Journal of Hydrometeorology*, in press.
- <u>Saavedra, O.</u>, Ryo, M. and Tanuma, K. (**2013**): Ground validation of satellite-based precipitation for flood simulation in South-East Asian River basins, *17th International Water Technology Conference* (*IWTC*), Istanbul, 5-7 Nov 2013, 6 pp
- Tanuma, K., <u>Saavedra Valeriano, O.C</u>., and Ryo, M. (**2013**): Spatial variability of precipitation and soil moisture on the 2011 flood at Chao Phraya River Basin, *17th International Water Technology Conference (IWTC)*, Istanbul, 5-7 November 2013, 8 pp

Schedule

JFY	2013		2014			2015						
Month	4-6	7-9	10-12	1-3	4-6	7-9	10-12	1-3	4-6	7-9	10-12	1-3
-TRMM & GSMap validation -Hydrological simulations -Near real-time applications												→
 Statistical evaluation of TRMM and GSMap against available gauge network at selected Asian and African basins Suggestion of proper correction factors for TRMM and GsMap data set at selected Asian and African basins Validation of correction factors for TRMM and GsMap data set at selected Asian and African basins Development of enhanced data 												
set for those selected basins												

Applications in African region Eastern Nile river and Sinai Peninsula

Results of Nile River discharge at Sudan

Flood management support system

Difference in accuracy between PMW and IR

For GSMaP_MVK: values more constant for MWR, alleviation of underestimation for IR + MVK

For GSMaP_Gauge: Stronger correlation for IR + MVK, alleviation of underestimation for PMW

Difference in POD and FAR between PMW and IR (for MVK)

Overall, MWR was better for both POD and FAR

Some resemblance in tendency could be seen between MWR and IR As expected where POD is low, FAR is high Daily precipitation April – December 2000

Daily precipitation [mm]

Day