Field experiments for the DPR algorithm development

Kenji Nakamura
Dokkyo Univ.
H. Minda
Nagoya Univ.
Y. Fujiyoshi
Hokkaido Univ.
K. Nakagawa, H. Hanado
National Institute of Communications Technology

The Japan PMM PI meeting, TKP Takehashi Conference Center, Tokyo,
Target

Contribute to the scattering table at Ka-band radiowaves, particularly for solid precipitation

This fiscal year (JFY2013)

Continue rain observation at Sapporo

Observation: done. Data analysis: yet

Continue data analysis for Okinawa, Mt. Fuji, Nagaoka experiments

Nearly done. Need more careful analyses

Conduct melting layer observation at Zao

On going
Actually JAXA direct experiment

Ka-radar collaboration

EORC/JAXA: Y. Kaneko, K. Komachi, K. Yamamoto, R. Oki
 Management, logistics, observation

NICT: K. Nakagawa, H. Hanado
 Observation, Ka-radar maintenance

NIED: K. Iwanami, S. Nakai
 Collaboration for snow observation (Tsukuba, Nagaoka)

Hokkaido Univ.: Y. Fujiyoshi, M. Nishikawa
 Collaboration for snow observation, data analysis

Nagoya Univ.: H. Minda
 NU instrument maintenance

Yamaguchi Univ.: K. Suzuki
 Video sonde operation including tethered balloon

Dokkyo Univ.: K. Nakamura: PI
Scattering Table
With BB, 0<D0<2 mm
Dual Ka radar experiment in Nagaoka

- Mobile precipitation observation system (MOS)
 - parsivel
 - Humidity and Temperature Probe (HMP155)
 - 2DVD
- melted fraction meter

Elevation +1.4°
Time-range section of Z_m - snow events -

- 2012/02/03
 2:00 ~ 3:00

- 2012/01/13
 8:30 ~ 9:30

range resolution: 12.5 m
temporal resolution: 10 s
Japan’s ground validation plans

- **Zao** (melting layer, snow)
 - Fall 2013 –

- **Nagaoka** (wet snow)

- **Mt. Fuji** (melting layer)

- **Sapporo** (dry snow)
 - Apr. 2012 – Fall 2013

- **Tsukuba** (rainfall/melting layer)

- **Okinawa** (rainfall/melting layer)
 - Jul. 2011

- **Zao** (melting layer, snow)
 - Fall 2013 –
We are here.

November 14, 2014
International conferences

Nakagawa et al., Kaneko et al., EGU 2013
Nishikawa et al., Nakagawa et al., IGARSS 2013
Nishikawa et al., Nakagawa et al., 36th Radar Conference
Nakagawa et al., AOGS
Nishikawa et al., Nakagawa et al., 29th ISTS
Results of field experiments for the DPR algorithm development

Masanori NISHIKAWA

Institute of Low Temperature Science,
Hokkaido University

and Ka-radar collaboration
Topics and Objective

Results of measurements of snow and melting layer using the dual Ka-band radar system are reported.

1) Field Experiment 1 (Sapporo/Nagaoka):

To understand behavior of k-Z_e of snow, measured k-Z_e plots are classified by temperature.

k-Z_e relations of snow are summarized for the algorithm.

2) Field Experiment 2 (Mt. Zao):

First results of k-Z_e relations of melting layer at Mt. Zao are presented.
Results 1:
k-Z_e relations of snow
Dual Ka radar experiment in Sapporo

Mobile precipitation observation system (MOS)
k-Ze plots by every 1 °C for all snow events in Sapporo

$k = 8.6 \times 10^{-2} Ze^{0.37}$ for $-4 \leq T < -3$

$k = 1.4 \times 10^{-1} Ze^{0.23}$ for $-3 \leq T < -2$

$k = 1.8 \times 10^{-1} Ze^{0.16}$ for $-2 \leq T < -1$

$k = 1.7 \times 10^{-1} Ze^{0.17}$ for $-1 \leq T < 0$

$k = 2.6 \times 10^{-1} Ze^{0.48}$ for $0 \leq T < 1$

$k = 8.4 \times 10^{-1} Ze^{0.22}$ for $1 \leq T < 2$

-4 ≤ T < -3

-3 ≤ T < -2

dry snow

-2 ≤ T < -1

-1 ≤ T < 0

0 ≤ T < 1

wet snow

1 ≤ T < 2
Summary of k-Z_e relations of Sapporo and Nagaoka experiments

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>Sapporo</th>
<th>Nagaoka</th>
</tr>
</thead>
<tbody>
<tr>
<td>-12 ≤ T < -11</td>
<td>$k=1.6\times10^{-1}Z_e^{0.44}$</td>
<td></td>
</tr>
<tr>
<td>-11 ≤ T < -10</td>
<td>$k=1.3\times10^{-1}Z_e^{0.29}$</td>
<td></td>
</tr>
<tr>
<td>-10 ≤ T < -9</td>
<td>$k=1.4\times10^{-1}Z_e^{0.24}$</td>
<td></td>
</tr>
<tr>
<td>-9 ≤ T < -8</td>
<td>$k=1.9\times10^{-1}Z_e^{0.16}$</td>
<td></td>
</tr>
<tr>
<td>-8 ≤ T < -7</td>
<td>$k=1.1\times10^{-1}Z_e^{0.33}$</td>
<td></td>
</tr>
<tr>
<td>-7 ≤ T < -6</td>
<td>$k=1.0\times10^{-1}Z_e^{0.30}$</td>
<td></td>
</tr>
<tr>
<td>-6 ≤ T < -5</td>
<td>$k=1.4\times10^{-1}Z_e^{0.22}$</td>
<td></td>
</tr>
<tr>
<td>-5 ≤ T < -4</td>
<td>$k=1.4\times10^{-1}Z_e^{0.25}$</td>
<td>$k=6.4\times10^{-3}Z_e^{0.65}$</td>
</tr>
<tr>
<td>-4 ≤ T < -3</td>
<td>$k=8.6\times10^{-2}Z_e^{0.37}$</td>
<td>$k=1.4\times10^{-2}Z_e^{0.45}$</td>
</tr>
<tr>
<td>-3 ≤ T < -2</td>
<td>$k=1.4\times10^{-1}Z_e^{0.23}$</td>
<td>$k=1.0\times10^{-2}Z_e^{0.50}$</td>
</tr>
<tr>
<td>-2 ≤ T < -1</td>
<td>$k=1.8\times10^{-1}Z_e^{0.16}$</td>
<td>$k=3.9\times10^{-2}Z_e^{0.24}$</td>
</tr>
<tr>
<td>-1 ≤ T < 0</td>
<td>$k=1.7\times10^{-1}Z_e^{0.17}$</td>
<td>$k=4.6\times10^{-2}Z_e^{0.49}$</td>
</tr>
<tr>
<td>0 ≤ T < 1</td>
<td>$k=2.6\times10^{-1}Z_e^{0.48}$</td>
<td>$k=3.3\times10^{-2}Z_e^{0.55}$</td>
</tr>
<tr>
<td>1 ≤ T < 2</td>
<td>$k=8.4\times10^{-1}Z_e^{0.22}$</td>
<td>$k=3.8\times10^{-2}Z_e^{0.51}$</td>
</tr>
<tr>
<td>2 ≤ T < 3</td>
<td>$k=3.7\times10^{-3}Z_e^{0.84}$</td>
<td></td>
</tr>
<tr>
<td>3 ≤ T < 4</td>
<td>$k=9.1\times10^{-3}Z_e^{0.68}$</td>
<td></td>
</tr>
</tbody>
</table>
Results 2:
$k-Z_e$ relations of melting layer
Dual Ka radar experiment in Mt. Zao

Radar site1
SN001

Inter. site
MOS

Radar site2
SN002
X-band marine radar

elevation -4.1°
elevation +5.4°
Time-range section of Z_m (2013/11/26 20-21)

SN001 EL -4.1° Altitude (m)

SN002 EL 5.7° Altitude (m)

Hour (JST)

Range from Ka radar SN001 (km)

Range from Ka radar SN001 (km)

SN001

SN002
Estimation of Z_e and attenuation at a melting layer
(2013/11/26 20:50)
Vertical profiles of Z_e, dZ_e/dh and k
(2013/11/26 20:50)

Vertical profiles of Z_e, dZ_e/dh and k show the variation of reflectivity (Z_e),
vertical gradient of reflectivity (dZ_e/dh), and the index of refraction (k) with altitude.

- Z_e peak
- dZ_e/dh vs. Altitude (m)
- k vs. Altitude (m)
- Melting layer (ML)
- Above the ML
- Above Z_e peak
- Below Z_e peak
$k-Z_e$ plots around the melting layer
(2013/11/26 20:50)

- Black circles: $k-Z_e$ above the ML
- Red circles: $k-Z_e$ above Z_e peak within the ML
- Blue circles: $k-Z_e$ below Z_e peak within the ML
Conclusion

1) $k-Z_e$ relations of snow

• Measured $k-Z_e$ plots were classified by temperature. Difference of $k-Z_e$ relations between wet and dry snow appeared.

• $k-Z_e$ relations obtained at two field experiments were summarized for the algorithm.

2) $k-Z_e$ relations of melting layer

• First results of $k-Z_e$ relations of melting layer were presented.

• Behavior of $k-Z_e$ at melting layer was illustrated and this results indicate measured $k-Z_e$ relations of snow obtained other field experiments were reasonable.
k-Z_e plots by every 1 °C for all snow events in Nagaoka

\begin{align*}
 k &= 3.9 \times 10^{-2} \cdot Z_e^{-0.24} \\
 k &= 4.6 \times 10^{-2} \cdot Z_e^{0.49} \\
 k &= 3.3 \times 10^{-2} \cdot Z_e^{0.55} \\
 k &= 3.8 \times 10^{-2} \cdot Z_e^{0.51} \\
 k &= 3.7 \times 10^{-3} \cdot Z_e^{0.84} \\
 k &= 9.1 \times 10^{-3} \cdot Z_e^{0.68}
\end{align*}