2014.1.14-17 GCOM-C/SGLI PI mtg.

Aerosol remote sensing and assimilation process development

T. Inoue (AORI)

T. Nakajima, H. Takenaka, M. Hashimoto, S. Misawa N. Schutgens (Oxford U), T. Dai (IAP), A. Higurashi (NIES) EORC-support: S. Fukuda Collaboration with M. Yoshida (RESTEC)

Objectives

- Aerosol retrieval algorithms over ocean and land
 - Cloud shadow correction for 380nm (land)
 - 2 channel method (ocean)
 - Kaufman & Modified Kaufman method (land)
 - Generalized method (multi-wavelength, angle, pixels over land and ocean)
- MIROC+SPRINTARS aerosol assimilation system for various data sets
- NICAM+SPRINTARS aerosol assimilation system development (Stretched and Diamond grids)

Modified Kaufman's method for 380nm UV band

c from Radiative transfer model, and

S. Fukuda @JAXA

 $a = -0.192309 \exp(-9.62693 \square NDVI) + 0.3$

Retrieval of AOTs

Calipso

S. Fukuda (PHD)

Ocean: Two channel method of Higurashi et al. (JC'00), 670nm, 870nm Land: Kaufman & modified Kaufman methods (Kaufman et al., GRL'02; Fukuda, JGR'13) over dark target, 380nm, 670nm, 870nm, 1.6 μm, 2.2 μm

MODIS Deep Blue

Validation of AOT

- FY2013: Tuning of SSA with AERONET; Fukuda et al. (JGR'13)
- Modified Kaufman (This study)
- Minimum reflectance method: difficult to remove persistent aerosols with 3 day recurrence orbit of GOSAT

Algorithm of Yoshida et al. (ACP'13) for dust optical properties

- Extension of Neutral reflectance method (Kaufman, JGR'87)
- 9 year mean (2003-2011), OMI prescreen
- Lower SSA in Asia: Dust and soot mixed
- SSA related with land albedo

RE<0

A generalized method for aerosols with a multiwavelength, multi-angle imager and multi-pixel (Phase-II)

- Past stduies: Lyapustin et al. (JC'04), Dubovik et al. (AMT'11), Yukio Yoshida et al. (ACP'13)
- Combined MAP algorithm and Twomey-Phillips algorithm (Rogers, 2000; Phillips, 1962; Twomey, 1963)

Observation:

$$\zeta = f(u) + e, \quad u \in D(x, y, t, \lambda, r)$$

u: State vector of geophysical parameters ζ : Observation vector for satellite radiances (x, y, t): *space&time*, λ : *wavenegnth*, *r*: other parameters such as particle radius, angles etc

Cost function:

$$\phi = (\zeta - f)^{\mathrm{T}} S_{\mathrm{e}}^{-1} (\zeta - f) + (u - u_{a})^{\mathrm{T}} S_{a}^{-1} (u - u_{a}) + \sum_{k} \gamma_{k} |A_{k} + D_{k} u|^{2}$$

u_a: A priori knowledge of the state vector *Se* & *Sa*: Error covariance matrices for observation and a priori knowledge *A*, *D*: Smoothing constraint parameters for state vector

MAP solution:

$$\delta u = \left[\left(U^{\mathrm{T}} S_{e}^{-1} U + S_{a}^{-1} \right) + \sum_{k} \gamma_{k} D_{k}^{\mathrm{T}} D_{k} \right]^{-1} \cdot \left[U^{\mathrm{T}} S_{e}^{-1} \left(\zeta - f \right) - S_{a}^{-1} \left(u - u_{a} \right) - \sum_{k} \gamma_{k} \left(D_{k}^{\mathrm{T}} D_{k} u + D_{k}^{\mathrm{T}} A_{k} \right) \right]$$

Multi-pixel multi-wavelength method

- Fine mode with soot & coarse dust
- U= AOT(fine), AOT(coarse), Soot fraction, A_{g1}~A_{g4}
- GOSAT/CAI (380, 670, 870, 1600nm)

An example of results from the new method

- Sea water: good AOTs and soot fraction retrievals
- Snow surface: AOT(coarse) error < 0.07; soot fraction retrieval possible but with bias
- Checker board: good AOTs and soot fraction retrievals

Screening and correction method for AOT and AE over ocean from an imager for assimilation

 Corrections to the Collection 5 MODIS level 2 Aqua and Terra AOT and AE over ocean by comparison with coastal and island AERONET for years 2003– 2009. Aqua: 2003–2009; Terra: 2003–2009

MODIS AOT and AE selection and correction

A1 Data selection for MODIS AOT and AE

- Discard any MODIS pixel with the uncorrected τ₅₅₀ > 3;
- discard any MODIS pixel with cloud fraction > 0.8;
- discard any MODIS pixel that has no neighbours;
- discard any MODIS pixel whose standard error is larger than
 - Terra: $0.003 + 0.036 \tau_{550} + 0.023 \tau_{550}^2$;
 - Aqua: $0.002 + 0.040 \tau_{550} + 0.021 \tau_{550}^2$;
- discard any MODIS pixel with SZA < 20°;
- discard any MODIS pixel for which RH < 0.2 and T < 260 K.

Here τ_{550} is the MODIS AOT at 550 nm and SZA the solar zenith angle. RH is the relative humidity and T is the temperature, both at 2 m above surface (NCEP-DOE-II).

A2 Correction for MODIS AOT

The following equations should be processed sequentially, like FORTRAN computer code. If Terra $\tau_{550} \leq 0.049$ then

$\tau_{550} = (1 + 0.181581 - 0.0168456 w) \tau_{550}$	(A1)
$\tau_{550} = (\tau_{550} - 0.0287665) / 0.243752$	(A2)
$\tau_{550} = \tau_{550} + 0.0207946 - 0.000153499 \Theta$	(A3)
$\tau_{550} = (1 - 0.364205 - 0.100776 f_{\rm c}) \tau_{550}$	(A4)
$\tau_{550} = (1.0 - 0.0822829 + 0.0781099\alpha) \tau_{550}.$	(A5)
If Terra $\tau_{550} > 0.049$ then	
$\tau_{550} = \tau_{550} - 0.0122103 - 0.0358403 f_{\rm c}$	(A6)
$\tau_{550} = \tau_{550} + 0.0320079 - 0.000243895 \Theta$	(A7)
$\tau_{550} = \tau_{550} - 0.0294600 + 0.0266009\alpha$	(A8)
$\tau_{550} = (\tau_{550} - 0.0142035) / 0.898996$	(A9)
$\tau_{550} = \tau_{550} + 0.00378178 - 0.000665484 w.$	(A10)
If Aqua $\tau_{550} \leq 0.05$ then	
$\tau_{550} = (1 + 0.315863 - 0.0306199w) \tau_{550}$	(A11)
$\tau_{550} = (\tau_{550} - 0.0271628) / 0.301162$	(A12)
$\tau_{550} = \tau_{550} + 0.00514700 - 0.0274383 f_{\rm c}$	(A13)
$\tau_{550} = (1 - 0.350973 + 0.0378387\alpha) \tau_{550}.$	(A14)
If Aqua $\tau_{550} > 0.05$ then	
$\tau_{550} = (1 - 0.258509 + 0.164087\alpha)\tau_{550}$	(A15)
$\tau_{550} = (\tau_{550} - 0.0328901) / 0.760698$	(A16)
$\tau_{550} = \tau_{550} + 0.00646153 - 0.0322341 f_{\rm c}$	(A17)
$\tau_{550} = \tau_{550} + 0.0106865 - 0.00186725 w,$	(A18)
where α is the uncorrected MODIS AE. Θ the scat	ttering an-

where α is the uncorrected MODIS AE, Θ the scattering angle, w the NCEP-DOE-II 10 m wind speed and f_c the cloud fraction.

A3 Additional selection criterium for AE

For AE we use an additional selection criterium that optimizes the agreement between the original MODIS and AERONET AE $% \left({{\rm AE}} \right)$

- Aqua: $\tau_{860} \ge 0.055$;

```
– Terra: τ<sub>860</sub> ≥ 0.057
```

where τ_{860} is the (uncorrected) MODIS AOT at 860 nm.

A4 Correction for MODIS AE

The following equations should be processed sequentially, like FORTRAN computer code. If Terra $\tau_{550} \le 0.083$ then $\alpha = \alpha + 0.239255 + 0.0181123 w$ (A19) $\alpha = (\alpha - 0.640555)/0.229146$ (A20) $\alpha = \alpha + 1.00041 - 0.00732544 \Theta$. (A21) If Terra $\tau_{550} > 0.083$ then

$\alpha = \alpha + 0.423368 - 0.00279822 \Theta$

$\alpha = (\alpha - 0.334271)/0.667072$
$\alpha = \alpha - 0.128672 + 0.0246823 w.$
If Aqua $\tau_{550} \leq 0.087$ then
$\alpha = (\alpha - 0.404072)/0.278597$
$\alpha = (1.0 + 0.200161 - 0.00561571 \Theta) \alpha$
$\alpha = \alpha + 0.155928 + 0.0268758 w.$
If Aqua $\tau_{550} > 0.087$ then
$\alpha = (\alpha - 0.429633)/0.586594$

 $\alpha = \alpha - 0.166538 + 0.0317318 w$ $\alpha = \alpha + 0.101102 - 0.000775233 \Theta$

where τ_{550} is the uncorrected MODIS AOT, Θ the scattering angle, w the NCEP-DOE-II 10 m wind speed and f_c the cloud fraction.

A5 Random error in MODIS AOT

For Terra, the random error in AOT at 550 nm can be modelled with

$$\begin{aligned} \epsilon &= 0.045 - \tau_{550} e^{-\frac{7503}{0.045}} + 0.24 \left(\tau_{550}^2 - 0.045^2\right) \\ &\left(1 - e^{-\frac{7550}{0.045}}\right) + 0.0125 f_c \\ &+ \begin{cases} 0 & \text{if } w \le 8 \,\text{ms}^{-1} \\ 0.003 \left(w - 8\right) \text{ if } w > 8 \,\text{ms}^{-1} \end{cases}. \end{aligned}$$
(A31)

For Aqua, the random error in AOT at 550 nm can be modelled with

$$\begin{aligned} &= 0.0425 - 1.25 \,\tau_{550} \, e^{-\frac{\tau_{500}}{0.0025}} + \left(0.25 \left(\tau_{550}^2 - .0325^2 \right) \right) \\ &\left(1 - e^{-\frac{\tau_{590}}{0.0025}} \right) + 0.0125 \, f_c \\ &+ \begin{cases} 0 & \text{if } w \le 8 \, \text{ms}^{-1} \\ 0.0035 \, (w - 8) \, \text{if } w > 8 \, \text{ms}^{-1}, \end{cases} \tag{A32} \end{aligned}$$

where τ_{550} is the *corrected* MODIS AOT (see Sect. 7), *w* the NCEP-DOE-II 10 m wind speed and f_c the cloud fraction.

A6 Random error in MODIS AE

(A22)

(A23) (A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

For Terra, the random error in AE is reasonably well described by

```
\epsilon = 0.25 + 0.06\alpha + \exp\left(-3.75\sqrt{\tau_{550}}\right). \tag{A33}
```

For Aqua, the random error in AE is reasonably well described by

 $\epsilon = 0.25 + 0.08\alpha + \exp\left(-5\sqrt{\tau_{550}}\right),\tag{A34}$

where τ_{550} is the corrected MODIS AOT and α the corrected MODIS AE (see Sect. 7).

N. Schutgens (AMT'13)

Corrections to MODIS AOT and AE

N. Schutgens (AMT'13)

Impact on MODIS climatology

There is a significant impact on MODIS climatology, with notable reductions of AOT and increased land-ocean contrast.

AOT 2003-2009

AE 2003-2009

N. Schutgens

MIROC-SPRINTARS aerosol assimilation-Inversion system

Mean, 9-30 Jan., 2009

Schutgens et al., (Remote Sens. 2012)

NICAM+SPRINTARS assimilation system

Dai et al. (Atmos. Environ'14)

Computation estimate

- Generalized aerosol algorithm
 - Performance of 4min for 4 wavelengths, 5x5 pixel case with 1 thread@ Xeon E5-2687W x2: 9000 pixels/day
 - 250m pixels to 1km by sampling or average
 - Pixel number (1km equivalent): 40k*1.5k*0.5day*0.3 clear sky*14 cycles= 126 M pixels/day (14000 threads)
 - Target resolution: 20x20 pixels (20kmx20km) analysis with 2 CPU (32 threads)
 - Neural network version will be developed in FY2014 for all pixel analysis
- MIROC+SPRINTARS assimilation system
 - NIES SX-8 super computer possible for real time
 - Being implemented to GOSAT operation system
 - JAXA/NAL super computer?

Research schedule

Summary

- Phase-I (-FY2012)
 - Modified Kaufman method with 380nm, being used in GOSAT/CAI operation system
 - Cloud shadow screening method
 - Aerosol assimilation with MIROC-SPRINTARS, being introduced to GOSAT operation system
- Phase-II (FY 2013-)
 - Neutral reflectance method for dust aerosol retrievals: Yoshida et al. (ACP'13)
 - A new method with multi-wavelengths, -angles, and –pixels: Prototype developed
 - Aerosol assimilation with NICAM-SPRINTARS: Prototype developed
 - Skynet operation for aerosol validation: AERONET collaboration; Good agreement with AERONET AOT; SSA being improved

back up slides

Multi-pixel multi-wavelength method

M. Hashimoto @ AORI

