Development of wildfire detection algorithm

Koji Nakau PhD., Hokkaido University

Topics

- In Previous RA
 - MODIS 2.2 / 1.6μm with 1km/500m resolution
 - A fire radiation index in 4 μ m is estimated by multiple regression with 2.2 / 1.6 μ m
- In This RA
 - Simulation by ASTER
 - TIR fire detection algorithm (feedback from CIRC)
 - Validation dataset
 - Utilization of human eye
 - Gathering high resolution imagery

Flow of proposed algorithm in previous RA

Proposed algorithm (1)

$$Fire = (\underline{ABS} \lor (\underline{CT1} \land \underline{PF})) \land (\underline{\neg Mask})$$

Fixed threshold

Contextual threshold

Cloud, water, desert, sun glint

Examine the pixel further

Fixed threshold

Contextual thrs.

$$ABS = (Findex_{2.2} > 0.35)$$

$$CT1 = (Findex_{2.2} > 0.30)$$

Potential fire pixel detection

CT1 = (Findex_{2.2} > 0.20)
$$\land$$
 Nvalid > 0.25Nall
PF = ((0 < FireRad_{1.6}) \lor (0 < FireRad_{2.2})) \land (0.5 > Ref_{0.86}) \land (0.5 > NDSI)

Index for fire detection

Findex_{2.2} =
$$\underline{\text{FireRad}_{2.2}} - \underline{\text{FireRad}_{2.2}}$$

- $\max(0.04, 0.6 * (\text{FireRad}_{1.6} - \overline{\text{FireRad}_{1.6}}))$

Anomaly of estimated radiation from fire

Estimated 4µm radiation from fire

$$FireRad_{2.2} = Rad_{2.2} - 0.218Ref_{RED} - 0.0514$$

$$FireRad_{1.6} = Rad_{1.6} - 0.634Ref_{NIR} + 0.137Ref_{RED} - 0.030$$

Proposed algorithm (2)

Cloud₃ = $0.6 + 0.7 \max(0, \min(2, (0.00 + 0.10(283 \text{K} - BT_{11}))))$

 $Mask = adjCloud \lor (0 < Nbkgwater) \lor SunGlint \lor Desert$

```
No cloud No neighbor water
                                                                                                 No Sun glint No desert
   SunGlint = [same as MOD14]
                                                                                                               Nbkgwater = N \begin{bmatrix} (0 > \text{NDVI}) \\ \land (0.15 > \text{Ref}_{0.86}) \\ \land (0.15 > \text{Ref}_{2.2}) \end{bmatrix}
   Desert = (0.1N\text{valid} < N\text{fire})
                   \land (4 < N \text{fire} > N \text{valid})
                   \wedge (0.15 < \text{Ref}_{NIR})
                                                                                                                                   where \begin{bmatrix} \text{FireRad}_{2.2} \le 0.5 \\ \text{FireRad}_{1.6} \le 0.3 \end{bmatrix}
                  \land (2 > FireRad_{2.2} - \overline{FireRad_{2.2}})
                   \land (0.1 > \sigma [FireRad_{2,2}])
                                                                                                                Nvalid = N FireRad<sub>2.2</sub> \leq 0.5 FireRad<sub>1.6</sub> \leq 0.3
   Cloud = 15/16 < (0.6+0.7 \max(0, \min(2, \text{Cloud}_1)))
                  \times (1.0 + 0.5 \max(0, \min(2, \text{Cloud}_2)))
                  \times (0.6+0.7 \max(0, \min(2, \text{Cloud}_3)))
Cloud<sub>1</sub> = 0.6 + 0.7 \max(0, \min(2, (2.42 + 3.83(planck(BT_{11}, \lambda_{12}, \lambda_{12})) - Rad_{12}, \lambda_{12}))
Cloud<sub>2</sub> = 1.0 + 0.5 max \left| 0, \min \left[ 2, \left( -0.66 + 85.56 \frac{\left( \text{Ref}_{\text{BLUE}} + \text{Ref}_{\text{RED}} - 2 \text{Ref}_{\text{GREEN}} \right)}{\left( \text{Ref}_{\text{BLUE}} + \text{Ref}_{\text{RED}} \right)} \right] \right) \right|
```

Wildfire detection result (2004 Alaska)

Wildfire detection result (2004 Alaska)

Wildfire detection result (2004 Alaska)

In Previous RA

- Development of wild fire detection algorithm
 - using 2.2 / 1.6μm with 1km/500m resolution
 - Regression of 4μm fire radiation with 2.2 / 1.6μm
- Result
 - Succeeded to detect wildfire somehow.

Only 10-15% of HS are detected with 500m/1km data comparing to MOD14

- Next step
 - Simulation by ASTER
 - TIR (feedback from CIRC)
 - Ground truth dataset

2013-1-18 Daytime MODIS obs.	MOD14	SGLI 500m	SGLI 1km
#HS	2961	445	375.
True fire		378	314
False Alarm		67	61
Missed fire			2647

Improvement of fire detection using TIR

- Existing regression of $4\mu m$ fire radiation with $2.2/1.6\mu m$
- Simulation by ASTER
- TIR fire detection algorithm (feedback from CIRC)

Simulated fire detection with high-res. TIR images.

Wildfire detection only with 90m resolution ASTER 11um channel.

Wildfire detection using TIR

cloud

Current Algorithm for CIRC

- ■Background fire
- ■Valid BG pixel
- Cloud mask

Fire pixel is detected utilizing spatial anomaly of Brightness temperature. However, threshold for cloud mask or background fire is fixed value.

Contextual Threshold

- Fire: $L_{11\mu} > 1.5 + \overline{L_{11\mu}}$
 - ■有効背景画素 の平均輝度

[W/m2/um/str]

- Cloud: $BT_{11\mu} < 0$ °C
- BG fire: 70° C $< BT_{11\mu}$
- Valid BG: Non-cloud, fire

—Under construction

■雲マスクと■背景火災画素の判別に固定閾値を用いている。本来は地域や季節で変化するため精度制約要因となっている。→地域や太陽エネルギー等により調整し、精度向上を図る→成果はGCOM-C1にも応用

Sensitivity of fire detection with various resolution (CA)

Sensitivity of fire detection with various resolution (INA)

Summary of fire detection with Thermal Camera

- 90~270m resolution enable us to detect fires with MOD14 sensitivity.
 - TIR fire detection algorithm has certain performance
- Performance for low temperature fire should be improved.
 - Better potential fire detection
 - Better cloud masks
 - Farther improvement of threshold

Ground truth dataset

- Collection of high resolution IR imagery
 - ASTER
 - LANDSAT
- Utilization of human eye
 - JAL wildfire observation
 - Around 200 reports / year
 - Location, time, phenomena

JAL wildfire monitoring reports in 2013

Route		Reports
Total		199
	Europe	143
	America	45
	SE Asia	9
	Oceania	2

Geospatial distribution of wildfire by JAL reports and by MODIS

Wildfire detection score correlates to "number of smokes" on fire reports

Summary

- In Previous RA
 - A fire radiation index in 4 μ m is estimated by multiple regression with 2.2 / 1.6 μ m
- In This RA
- TIR can be used with a certain performance
 - Threshold should be tuned for SGLI
- Validation dataset (Utilization of human eye)
 - JAL fire observation can be used to gather L8 / ASTER wildfire scenes