Atmospheric correction for SGLI ocean color data

Mitsuhiro Toratani, Hajime Fukushima, Akihiko Tanaka (Tokai University)

Contents

- Overview of atmospheric correction
- Spectral dependency of aerosol optical thickness
 - Relationship between Angstrom exponent aerosol type
- Aerosol model to make look-up tables for aerosol reflectance correction
 - Proposal model and sensitivity test of aerosol parmeters
 - Cloud detection in cloud edge
 - Performance of Inter-band Radiance Combination index method (IRC)

Overview of atmospheric correction for SGLI

- Based on
 - Wang and Gordon (1994) for SeaWiFS
 - Siegel et al.(2000)
 - Stumpf et al.(2003)
 - Toratani et al.(2007) for GLI
 - Correction of absorptive aerosol
 - Consideration of high turbid area

Flowchart of atmospheric correction scheme

RIAM-CFORS

- Chemical weather FORecasting System
- based on 3D on-line regional scale chemical transport model fully coupled with RAMS (Regional Atmospheric Modeling System)

U-V&Dust total m/s&ug/m3 JST 2013/11/20.12:00:00

 $\label{eq:XUNIT} {\tt XUNIT} \ = \ 6\,.\,000\,{\tt E} {+}\,0\,1\,, \ {\tt YUNIT} \ = \ 6\,.\,000\,{\tt E} {+}\,0\,1$

©九州大学応用力学研究所(RIAM)/国立環境研究所(NIES)

DUST Sulfate : SO₄ Black Carbon: BC Organic Carbon : OC

http://www-cfors.nies.go.jp/~cfors/outline.html

Microtops 2 Observation

- · 2013/2/26-7/8
- 12 fine days
 - Dust : 7 days
- Wavelengh
 - 380, 440, 675,
 - 870, 1020nm
- Calculate α (440, 675)

Tokai University

Angstrom exponent vs Aerosol concentration

Relationship between α and BC/SO₄

Dust quantity related α (440,675) except for the ratio BC/SO₄ was higher (>0.2). Requiring attention of component of fine mode, especially absorptive aerosol such as black carbon.

Comparison MODIS data with Radiative transfer simulation

Satellite data MODIS/Aqua Radiative transfer simulation

rstar6b

Sampling Lt at same geometry and aerosol optical thickness Comparison

Calculation result Lt at same geometry and aerosol optical thickness

Aerosol model

- Bimodal model
 - Aerosol model provided by atmosphric group
 - It derived from AERONET data

Proposed model Fine mode $r=0.14 \sigma=1.86$ Coarse mode $r=3.42 \sigma=2.34$

Aerosol type mixture model Tropospheric:Sea spray=40:60

Sampling Lt from MODIS/Aqua data

- Data in Jan. in 2013
- A2013003031000
- A2013005030000
- · A2013007024500
- · A2013008033000
- A2013009023500
 A2013010032000
 A2013015033500
- A2013016024000
- A2013017032500
- A2013019031000
- A2013021030000
 A2013024033000
 A2013027022500

Satellite radiance from MODIS/Aqua Jan. in 2013 on Pacific ocean

N=216 $\theta = 15$ $\theta_0 = 51$ $\Delta \Phi = 120$ $\tau_A (869) = 0.15$

Lt(869) : 4.25 Std.dev.: 0.45 (W/(m^2•sr•µm)

Satellite radiance from MODIS/Aqua Jan. in 2013 on Pacific ocean

Aerosol model

- Initial model was not applicable.
- Sensitivity test of Parameters
 - Small particle radius
 - Std.Dev. of small particle
 - Large particle radius
 - Std.Dev. of large particle
 - Ratio of volume size
 - Wind speed
 - Relative humidity
 - Comparison Lt(865)

Result of sensitivity test

Radius of fine mode

Radius of coarse mode

Result of sensitivity test

Std.dev. of fine mode

Std.dev. of coarse mode

Sensitivity test of aerosol parameters shows that average radius of fine mode is sensitive.

Cloud screening problems

- Highly turbid water Manageable by two-step masking
 - may trip the cloud mask
- Sub-pixel cloud (incl. cloud edge)
 - may affect atmospheric correction
- Cloud shadow
 - "low Rrs555" mask may not enough Bigger effect when
 - inter-band registration is not perfect
 - or
 - inter-band time difference is large

cause erroneous L2 pixel value

GOCI, ···

GLI, SGLI,…

Anomalous features around cloud edge pixels (from GLI chl-a image of May 24, 2003, south of Japan)

Normalized water-leaving radiance at 4 GLI bands.

a) Pixels sampled at cloud-free area, and

b) sampled at cloud-adjacent pixels with anomalous concentration estimate.

Inter-band Reflectance Consistency over a Weekly Global GLI Data

Sub-scene 1 (Typhoon case)

CSP Histogram for Typhoon Scene

Summary

- Spectral dependency of aerosol optical thickness
 - relationship between Angstrom exponent aerosol type
 - Dust quantity related α (440,675) except for the ratio BC/SO₄ was higher (>0.2).
 - Requiring attention of component of fine mode, especially absorptive aerosol such as black carbon.

Summary

- Aerosol model to make look-up tables for aerosol reflectance correction
 - Proposed aerosol model was not applicable in this study.
 - Proposal model and sensitivity test of aerosol parmeters
 - Sensitivity test of aerosol parameters shows that average radius of fine mode is sensitive.

 Inter-band Radiance Consistency method for cloud masking had good performance.

Backup slide

Aerosol correction

- Now we are making aerosol look-up table.
 - Aerosol model provided by atmosphere group
 - it derived from AERONET data
 - Rstar6b (Radiative transfer code)

Atmospheric correction for high turbid area

- Detection of high turbid area
 - Threshold of total suspended matter concentration (TSM)
 - We developed simultaneously estimation algorithm of TSM concentration, AOT and Angstrom exponent using three bands at NIR.

2013/5/3 TSM from MODIS three NIR bands

Problem for SGLI

- SGLI has three NIR bands (670, 765, 865).
- It is difficult to use 765nm band because of oxygen absorption.

Consider for Oxygen absorption correction
Or use constant of angstrom exponent
Laughly TSM estimation