Study of temporal and scan-angle dependencies of vicarious calibration coefficients

GLI calibration 5th group Murakami, 22 March 2004

We are now investigating temporal and scan-angle dependencies of vicarious calibration coefficients (see a presentation in ADEOS-2 workshop).

Today's recommendation for dark targets is "CH13-19 B-side base coefs considered ver.1 de-striping coefficients", 
scantable_gmCb_C1_13sp.txt (reading and applying ways are shown the last part of this page).

Figures 1, 2 and 3 show channel and temporal changes of B-side and A-side vicarious coefficients, and their A/B ratios)

VCOEF_GMCB_C1_13_1.GIF - 27,183BYTES
  Figure 1 Mirror-B-side vicarious calibration coefficients basing CH13-19 B-side.

VCOEF_GMCB_C1_13C0_1.GIF - 29,041BYTES
  Figure 2 Mirror-A-side vicarious calibration coefficients basing CH13-19B.

DSP_VCOEF_ABDIF_13C1R_12.GIF - 43,997BYTES
  Figure 3 A-side by B-side coefficient ratio (upper) and corresponding radiance difference (lower).

DSP_VCOEF_ABDIF_13C1R_4.GIF - 12,812BYTES Figure 4 Average input radiance used for deriving Figures 1 and 2

Difference of A/B radiance is calculated by average input radiance shown in Figure 4. The tendency is just the opposit of results by on-board calibrations (see http://suzaku.eorc.jaxa.jp/GLI/cal/presen/2_tanaka.pdf).

SCANCOEF_GMCB_C1_13C1.JPG - 278,919BYTES
  Figure 5 Scan-angle dependencies for each sample date (B-side based on CH13-19B).

SCANCOEF_GMCB_C1_13C0.JPG - 304,309BYTES
  Figure 6 Scan-angle dependencies for each sample date (A-side based on CH13-19B).

Figures 5 and 6 show the scan-angle dependencies for each sample date for mirror sides B and A derived basing CH13-19B.
We set a model equation and regression tables for each channel. The equations, tables and application are not decided yet, however, we show tentative ones below for level-2 and other investigations
.

L_corr[W/m^2/str/um] = L_org[W/m^2/str/um] * coef
  coef = tbl(1,nb) +tbl(2,nb)*phi(p) +tbl(3,nb)*phi(p)^2 +tbl(4,nb)*phi(p)^3
                          +tbl(5,nb)*jdy +tbl(6,nb)*jdy^2 +tbl(7,nb)*jdy^3
                          +tbl(8,nb)*phi(p)*jdy

  L_corr: corrected radiance for each GLI channel
  L_org: original (de-striped) radiance for each GLI channel
  coef: vicarious calibration coefficients
  jdy: day from ADEOS-2 launch derived by 2) below
  phi: scan mirror incident angle derived by 3) below
  tbl: Table below read by 1) below
    CH13-19 B-side base coefs:
scantable_gmCb_C1_13C1.txt
    CH13-19 A-side base coefs: scantable_gmCb_C1_13C0.txt 
    CH13-19 B-side base coefs correctecd by de-striping coefficients:
                                             scantable_gmCb_C1_13sp.txt (<=today's recommendation)
  nb: GLI channels (1-25 for CH01-19, 24-29)
  p: sample number (cross-track) in level-1A [1-1276] or level-1B [21-1256]

The A-side ones should be used basically considering current definition of de-striping processing.
However, difference between B and A-side coefficients in Figures 5 and 6 show that stray light may influence to the A-side coefficients from green to SWIR, especially from February to April 2003.
The A-side coefficients can be used for the ocean area (or for dark targets, e.g., aerosol over the ocean), however, they cannot used for the bright target, because the stray light may influence to Lt_org as "offset" not as "ratio", and the vicarious coefficients are described as "ratio" around input level over the ocean.

Practically, we resommend one solution for the A-side problem,
using B-side coefficients corrected by de-striping coefficients: scantable_gmCb_C1_13sp.txt 
(see Figure 7).

SCANCOEF_GMCB_C1_13SP.JPG - 279,919BYTES
  Figure 7 Scan-angle dependencies for each sample date (B-side based on CH13-19B correctecd by de-striping coefficients).

For example, nLw estimations at MOBY site are changed by the above coefficient as below.
  
Original   B-side coefficients   A-side coefficients   B-side coefficients correctecd by de-striping

--------------------------------------
1) Read table

      real*4      vctbl(8,25)
       open(44,file='scantable_gmCb_C1_13C0.txt',err=444,
     & access='sequential',form='formatted',status='old')
       do nb=1,25
        read(44,'(2x,8e16.7)') (vctbl(k,nb),k=1,8)
       enddo
       close(44)
       goto 445
  444  do nb=1,25
        vctbl(1,nb)=1.
        do k=2,8
         vctbl(k,nb)=0.
        enddo
       enddo
  445  continue

B side: scantable_gmCb_C1_13C1.txt
A side: scantable_gmCb_C1_13C0.txt
B side corr: scantable_gmCb_C1_13sp.txt  <- recommended

2) Calculate day from ADEOS-2 launch
 e.g.,   Product_Name='A2GL10307110612OD1_PV1B0000000.00'

      data mnl/0,31,59,90,120,151,181,212,243,273,304,334/
       read(Product_Name,'(5x,3i2)') iy,im,id
       jdy=17+(iy-3)*365+mnl(im)+id
    (17: count from 2002/12/14 as 0)

3) Calculate mirror incident angle (phi)
      npl=1276*ndets/12
      do np=1,npl
       scag=17.1534+0.035810*12./ndets*(np-1)
       phi(np)=acos(sin(10.*d2r)*cos(tilt0*d2r)*cos(scag*d2r)
    &          +cos(10.*d2r)*sin(scag*d2r))/d2r
      enddo

  ndets=12 for 1km, 48 for 250m
  d2r=3.14159/180
  tilt0=-15.8, 0, +15.8 degree (=tilt_angle; mechanical angle)

4) Apply
      vnirb/1,2,3,4,6,8,9,11,13,14,15,16,17,18,19,20,21,22,23/
      swirb/1,2,3,4,5,6/
     nbr=vnirb(nb) or swir(nb-23)


       do m=1,nline
        do n=1,1236
         slope=gsys(nbr)   ! or gsys_2km(nbr-4)
         rad0=(idata-iflag)*slope
         np=n+20
         if(nb.gt.23) nbd1=nb-4
         vct1=vctbl(1,nbd1)+vctbl(2,nbd1)*phi(np)
     &                         +vctbl(3,nbd1)*phi(np)**2
     &                         +vctbl(4,nbd1)*phi(np)**3
     &                         +vctbl(5,nbd1)*jdy
     &                         +vctbl(6,nbd1)*jdy**2
     &                         +vctbl(7,nbd1)*jdy**3
     &                         +vctbl(8,nbd1)*phi(np)*jdy
          rad1=vct1*rad0
         endif
        enddo
       enddo

  nb:band
  idata : 2-byte uint from l1b_ch#_data
  iflag:  flag field from l1b_ch#_data
----------------------------------------