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1. Algorithm outline 
 
1.1 Algorithm Code 

PHFT_V3.f95 
 
1.2 Product Code 

PHFT (Phytoplankton functional type, research level product) 
 
1.3 PI 

Toru Hirawake (GCOM-C1 2nd RA 133, 4th RA 304) 
 
1.4 Overview of algorithm 

  Phytoplankton functional types (PFTs) are phytoplankton groups classified based 
on their biogeochemical and ecological functions. Size distribution of phytoplankton 
is one of the PFTs and important factor to determine the structure of ecology, 
particularly a number of trophic levels in the ocean. This algorithm estimates 
abundance of each phytoplankton size classes (micro-, nano- and picoplankton) in 
their ratio and chlorophyll a (Chl a) concentration. 
  Phytoplankton size class has been modeled using one of inherent optical properties 
(IOPs) in the past studies; light absorption of phytoplankton [e.g. Fishwick et al., 
2006; Hirata et al., 2008] and backscattering coefficient [e.g. Montes-Hugo et al., 
2008; Vaillancourt et al., 2004]. While ratio of the absorption coefficient, 
aph(λ1)/aph(λ2), tends to express pigment composition and packaging, spectral slope of 
the scattering coefficient, γ, is controlled by geometry of phytoplankton cell. To take 
the advantage of these IOPs, the size deriving model (SDM) using both the absorption 
ratio and γ was established in the Arctic Ocean and estimated the abundance of 
ultraplankton (< 5µm) [Fujiwara et al., 2011]. 
  In the previous RA (RA2), the SDM had been improved to estimate three size 
classes. However, dataset is quite limited because of difference in filter pore size 
among cruises and lack of backscattering data. Therefore, we applied the theory of 
particle size distribution [Junge, 1963] and estimated slope of chlorophyll size 
distribution (CSD) using only absorption coefficient of phytoplankton in the RA4. 
  The data set used in this study were obtained from a wide range of the North 
Pacific Ocean and the Western Arctic through fifteen cruises over a 9-year period 
(Figure 1). At each station, size fractionated Chla (Chlasize), light absorption 
coefficient and spectral radiation were measured. Seawater samples were collected 



from the sea surface using a clean platic bucket. Seventy percent of in situ data (N = 
180) were used for model development and the rest (N = 78) was reserved for model 
validation. 
 

 

Figure 1. Map of sampling stations. 
 

 
2. Theoretical Description 
 

2.1. Basic of algorithm 
  Assuming that the PSD follows the Junge-type [Junge, 1963] power law size 
distribution [Bader, 1970], the number concentration of particles (N) of particles per 
unit volume of seawater normalized by the size bin diameter (D) can be expressed as 
follows: 
 

𝑁𝑁(𝐷𝐷) = 𝑁𝑁0( 𝐷𝐷
𝐷𝐷0

)−𝜉𝜉 ,      (1) 

 
where ξ is the Junge slope of PSD, and D0 is a reference diameter at which N0=N(D0). 
Therefore, the total number of particles in a given size range can be derived as 
integrating Eq. (1) from the minimum diameter (Dmin) to the maximum diameter 
(Dmax) enabling the PSD to be partitioned into distinct classes, described by 
 



𝑁𝑁 = ∫ 𝑁𝑁0( 𝐷𝐷
𝐷𝐷0

)−𝜉𝜉𝑑𝑑𝐷𝐷.𝐷𝐷max
𝐷𝐷mix

     (2) 

 
  If assuming that the Chla is particle and thus the Chla size distribution (CSD) also 
follows the Junge-type power law distribution, the total Chla (Chlatotal) and Chlasize in 
a given size range from D1 to D2 can be expressed with Eq. (3) and (4) as follows:  
 

Chl𝑎𝑎total = ∫ Chl𝑎𝑎0( 𝐷𝐷
𝐷𝐷0

)−𝜂𝜂𝑑𝑑𝐷𝐷,𝐷𝐷max
𝐷𝐷min

    (3) 

Chl𝑎𝑎size = ∫ Chl𝑎𝑎0( 𝐷𝐷
𝐷𝐷0

)−𝜂𝜂𝑑𝑑𝐷𝐷,𝐷𝐷2
𝐷𝐷1

    (4) 

 
where Chla0 is the reference Chla at D0 (here, 0.7 μm), and η is the exponent of Chla 
size spectrum (hereafter CSD slope). The strong magnitude of the CSD slope 
indicates the large proportion of smaller phytoplankton, while that of low magnitude 
suggests the larger phytoplankton dominant condition. In this study, we assumed Dmin 
and Dmax as the pore size of GF/F filter (i.e. 0.7 μm) and 200 μm [Dussart, 1965], 
respectively. The CSD slope is derived as the slope of linear regression in log-space 
between the inverse log-transformed median diameters from log-transformed D1 to D2 
and Chlasize normalized by the size bin width.  
  Note that the Chla fraction of arbitrarily defined size range (Fsize) can be derived 
using the CSD slope as follows: 
 

𝐹𝐹size = 100× Chl𝑎𝑎size
Chl𝑎𝑎total

= 100×
∫ Chl𝑎𝑎0( 𝐷𝐷𝐷𝐷0

)−𝜂𝜂𝑑𝑑𝐷𝐷𝐷𝐷2
𝐷𝐷1

∫ Chl𝑎𝑎0( 𝐷𝐷𝐷𝐷0
)−𝜂𝜂𝑑𝑑𝐷𝐷200

0.7
= 100× 𝐷𝐷2

1−𝜂𝜂−𝐷𝐷1
1−𝜂𝜂

2001−𝜂𝜂−0.71−𝜂𝜂
, (5) 

 
where the constants Chla0 and D0 no longer exist in Eq. (6), so that only the CSD 
slope and diameter range are required for estimating the each fraction of 
phytoplankton size classes. 
 

 
2. 2. Quantification of CSD slope using phytoplankton absorption spectra 
  To quantify the CSD slope using the spectral shape of aph(λ), we applied PCA to 
normalized aph(λ) following the method of Wang et al. [2015]. In brief, normalized 
aph(λ) (aph

std(λ)) was derived from its wavelength mean and the standard deviation. 
The formula for aph

std(λ) is shown as below:  



 

𝑎𝑎phstd(λ) = �𝑎𝑎ph(𝜆𝜆) − mean �𝑎𝑎ph(𝜆𝜆)�� /std(𝑎𝑎ph(𝜆𝜆)),  (6) 

 
where mean(aph(λ)) and std(aph(λ)) are the wavelength mean and standard deviation 
of aph(λ), respectively. 
  PCA was then applied to aph

std(λ) to capture spectral feature of phytoplankton 
absorption property. The input values for PCA was a matrix (m × N) constituted of 
aph

std(λ), where m and N were the number of wavelengths and samples, respectively. 
The resulting PC scores were assumed to correlate with the CSD slope, and hence the 
CSD slope was quantified as the logistic-type regression model using ith PC score (Si) 
and regression coefficients between the CSD slope and PC scores (β0 and βi) as 
below: 
 

𝜂𝜂 = �𝛽𝛽0 + exp∑ 𝛽𝛽𝑖𝑖𝑆𝑆𝑖𝑖𝑘𝑘
𝑖𝑖=1 �

−1
,     (7) 

 
where k is the number of PCs. Here, Si can also be express as follows: 
 
𝑆𝑆𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗𝑎𝑎phstd(𝜆𝜆𝑗𝑗)𝑚𝑚

𝑗𝑗=1 ,     (8) 
 
where wi,j and aph

std(λj) are the loading factor for the ith PC and aph
std(λ) value at 

wavelength j, respectively. Therefore, we obtained an equation by substituting for 
calculation of Si in Eq. (7): 
 

𝜂𝜂 = �𝛽𝛽0 + exp∑ 𝐶𝐶𝑗𝑗𝑎𝑎phstd(𝜆𝜆𝑗𝑗)𝑚𝑚
𝑗𝑗=1 �

−1
,    (9) 

 
𝐶𝐶𝑗𝑗 = ∑ 𝛽𝛽𝑖𝑖𝑤𝑤𝑖𝑖,𝑗𝑗

𝑘𝑘
𝑖𝑖=1 .      (10) 

 
  Finally, the CSD slope is derived from Eq. (9) using the model parameters of β0 
and Cj. 
  The resulting model parameter β0 was -0.221 and Cj for each wavelengths at 412, 
443, 469, 488, 531, 547 and 555 nm were -0.222 and 0.314, 0.021, -0.780, 0.243, 
1.714, -0.189 and -1.305, respectively. 
 



 
2. 3. Evaluation of estimate accuracy 
  The root-mean square error (RMSE) was adopted when we validated the agreement 
of two values such as measured and estimated CSD slope. The RMSEs were 
computed as relative values so as to give equal weights to all samples, and expressed 
as percentages [Ciotti et al., 2006], described by 
 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅(%) = 100×�1
𝑁𝑁
∑ �𝑀𝑀𝑀𝑀𝑎𝑎𝑀𝑀𝑖𝑖−𝑀𝑀𝑀𝑀𝑑𝑑𝑖𝑖

𝑀𝑀𝑀𝑀𝑎𝑎𝑀𝑀𝑖𝑖
�
2

𝑁𝑁
𝑖𝑖=1 ,   (11) 

 
where and Measi and Modi are ith measured and modelled values, respectively. 

 
 
3 Validation 

  The performance of CSD model was examined by comparing measured CSD slope 
determined from in situ Chlasize and modeled CSD slope estimated from in situ 
Rrs(λ). The resulting RMSE between measured and modeled CSD slope was 25.9% 
(Figure 2). Since CSD model relies on the spectrum shape of aph(λ), the accuracy of 
estimated CSD slope strongly depends on the robustness of IOP algorithms. The 
satellite product accuracy goal for Chla has been delimited the ± 35% of agreement 
with respect to actual value measured in the field [Hooker and McClain, 2000], and 
other products such as primary production were also evaluated based on this range. 
Moreover, the existing methods to derive phytoplankton size structure often use Chla 
as an input data [Devred et al., 2011; Hirata et al., 2011; Brewin et al., 2010] and are 
expected to contribute for understanding the biogeochemical process [McClain, 2009]. 
Therefore, the CSD model enabled to retrieve size structure of phytoplankton 
community with the same or better accuracy when comparing to Chla and other 
products came from Chla. 
 



Figure 2. Comparison of in situ CSD slope determined from in situ Chlasize and 
modelled CSD slope derived from estimated aph

std(λ) through QAA-v5 using in situ 
PRR data. Solid and dashed lined represent the 1:1 agreements and regression lines, 
respectively. 
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