Algorithm Theoretical Basis Document

GCOM-C/SGLI Level-3 Temporal Binning (G6A)

31 March 2017

Masahiro Hori

Japan Aerospace Exploration Agency

Contents

- 1. Introduction
- 1.1 Objectives
- 1.2 Development strategy
- 1.3 Processing targets

2. Theoretical Description

- 2.1 Processing flow
- 2.2 Statistics
- $2.3 \ QC \ process$
- 2.4. Sample images
- 3. Current status and remaining issues

1. Introduction

1.1 Objectives

The objective of the G6A algorithm is to take temporal statistics of SGLI Level-3 (L3) spatially-binned geophysical variable (GV) products. The temporal interval of the statistics is 8-day or 1-month. The spatial resolutions are kept the same.

1.2 Development strategy

The G6A algorithm is designed to use a same program code for taking statistics of all GVs in order to make the maintenance of the code simple. Basically the input and output of the G6A processing contains the same statistics variables except for the case of snow and ice cover extent (SICE) and cloud type (CLTYPE) in cloud properties (CLPR) product (see next sub-section). The SICE and CLTYPE are flag products and the input and outputs of these two GVs are customized so that the number of snow/ice cover observation or cloud type within each bin with a spatial resolution of 1/24 deg. for SICE and 1/12 deg. for CLTYPE is counted. Finally, to make the addition or deletion of GVs quite easy, the GV names of the statistical targets are defined in an external text file so that the change could be made without compiling the code.

1.3 Processing targets and outputs

Processing targets of the L3 GV temporal statistics are all SGLI products for land, cryosphere, ocean, and atmosphere. Input and output variables are summarized in Table 1.

Input Product ID	Long Name	Geophysical Variables (GVs)	Output Product ID	Output Variables ^{*1}
RV01	Land surface reflectance	Rs_VN01	RV01	AVE, RMS, N _{used} , N _{input} , MIN, MAX, Date, QA_flag
RV02		Rs_VN02	RV02	Same as above
RV03		Rs_VN03	RV03	Same as above
RV04		Rs_VN04	RV04	Same as above
RV05		Rs_VN05	RV05	Same as above
RV06		Rs_VN06	RV06	Same as above
RV07		Rs_VN07	RV07	Same as above
RV08		Rs_VN08	RV08	Same as above

Table. 1 List of the target products, GVs, and output types of the G6A processing

RV09		Rs_VN09	RV09	Same as above
RV10		Rs_VN10	RV10	Same as above
RV11		Rs_VN11	RV11	Same as above
RS01		Rs_SW01	RS01	Same as above
RS02		Rs_SW02	RS02	Same as above
RS03		Rs_SW03	RS03	Same as above
RS04		Rs_SW04	RS04	Same as above
RT01		Rs_TI01	RT01	Same as above
RT02		Rs_TI02	RT02	Same as above
RN08		Rs_VN08P	RN08	Same as above
RN11		Rs_VN11P	RN11	Same as above
RP01		Rs_PI01	RP01	Same as above
RP02		Rs_PI02	RP02	Same as above
GEOV		Absolute_relative_ azimuth ^{*3} Sensor_zenith Solar_zenith	GEOV	Same as above
GEOP		Absolute_relative_ azimuth_PL*3 Sensor_zenith_PL Solar_zenith_PL	GEOP	Same as above
GEOI		Absolute_relative_ azimuth_IR*3 Sensor_zenith_IR Solar_zenith	GEOI	Same as above
NDVI	Normalized difference vegetation index	NDVI	NDVI	Same as above
EVI_	Enhanced vegetation index	EVI	EVI_	Same as above
SDI_	Shadow index	SDI	SDI_	Same as above
LAI_	Leaf area index	LAI	LAI_	Same as above
FPAR	Leaf area index	FAPAR	FPAR	Same as above
AGB_	Above-ground biomass	AGB	AGB_	Same as above
VRI_	Vegetation roughness index	VRI	VRI_	Same as above
LST_	Land surface temperature	LST	LST_	Same as above
SGSL	Snow grain size of	SIST	SGSL	Same as above

	shallow layer			
SIST	Snow and ice surface temperature	SIST	SIST	Same as above
SICE	Snow and ice cover extent	SICE	SICE	$N_{snow1}, N_{snow2},$ $N_{snow3}, N_{used},$ $N_{input}, Date,$ QA_flag
CFRX*2	Cloud properties	CLTYPE	CFRX*2	N _{cfrx} *2, N _{used} , N _{input} , Date, QA_flag
CLTT		CLTT	CLTT	AVE, RMS, Nused, Ninput, MIN, MAX, Date, QA_flag
CLTH		CLTH	CLTH	Same as above
COTW		CLOT_W	COTW	Same as above
CERW		CLER_W	CERW	Same as above
COTI		CLOT_I	COTI	Same as above
ΑΟΤΟ	Aerosol optical thickness over ocean by NP	AROT_ocean	ΑΟΤΟ	Same as above
AOTL	Aerosol optical thickness over land by NP	AROT_land	AOTL	Same as above
AAEO	Aerosol Angstrom Exponent over ocean by NP	ARAE_ocean	AAEO	Same as above
AAEL	Aerosol Angstrom Exponent over land by NP	ARAE_land	AAEL	Same as above
AOTP	Aerosol properties by PL	AROT_pol_land	ΑΟΤΡ	Same as above
AAEP	Aerosol properties by PL	ARAE_pol_land	AAEP	Same as above
ASSA	Aerosol properties by PL	ARSSA_pol_land	ASSA	Same as above
SST_	Sea surface temperature	SST	SST	Same as above
PAR_	photosynthetically	PAR	PAR_	Same as above

	available radiation			
L380	nLw @ 380nm	NWLR_380	L380	Same as above
L412	nLw @ 412nm	NWLR_412	L412	Same as above
L443	nLw @ 443nm	NWLR_443	L443	Same as above
L490	nLw @ 490nm	NWLR_490	L490	Same as above
L530	nLw @ 530nm	NWLR_530	L530	Same as above
L565	nLw @ 565nm	NWLR_565	L565	Same as above
L670	nLw @ 670nm	NWLR_670	L670	Same as above
T67 0	Taua @ 670nm	TAUA_670	T670	Same as above
T865	Taua @ 865nm	TAUA_865	T865	Same as above
CHLA	Chlorophyll-a concentration	CHLA	CHLA	Same as above
TSM_	Total suspended matter	TSM	TSM_	Same as above
CDOM	Colored dissolved organic matter	CDOM	CDOM	Same as above

*1 AVE: Average of valid GV data, RMS: Root Mean Square of valid GV data, N_{used}: Number of valid GV data actually used in the statistics, N_{input}: Number of input GV data, Min: Minimum of valid GV data, Max: Maximum of valid GV data, Date: Dates of the SGLI observations during the 8-day or 1-month interval period, QA_flag: Flag for quality assurance information, N_{snow1}: Number of snow or ice cover, N_{snow2}: Number of snow with vegetation or bare ice, N_{snow3}: Number of melting snow

*2 Input and output of CLTYPE statistics in the descending orbit is cloud fractions for individual cloud types. The "CFRX" and "cfrx" denotes the cloud fraction of type "x" which is the ID number of the ISCCP cloud classification. For example, in case of "cirrus cloud" the ISCCP ID is "1" and thus the output variable named as "Ncfr1" is stored in the output file with product ID of "CFR1". In the ascending orbit cloud fraction is estimated for three layer of High, Middle, and Low, the results of which are stored in "CFRH or cfrh", "CFRM or cfrm", and "CFRL or cfrlh", respectively. In addition, cloud fraction considering all the cloud types are also calculated and generated with the ID of "CFRA" and "cfra".

*3 Absolute relative azimuth angle (araz) is converted from sensor and solar azimuth angles by araz = | sensor_azimuth - 180.0 - solar_azimuth | and then its statistics (AVE, RMS, MAX, MIN) are calculated and stored in the output file of the G5A processing.

Basically (except for the case of flag products (SICE and CLTYPE)) the statistics variables taken and stored in the output files are the eight values or flag shown in Table1. When processing the flag products, the statistics of Ave, RMS, Min, and Max are not taken. Instead, only snow/ice or cloud counts are stored in the output file.

2. Theoretical Description

2.1 Processing flow

Figure 1 indicate the flow of the G6A L3 global GV temporal statistics processing. Spatial resolution and array definition of output files are kept the same as the input. That is, for the processing of land, cryosphere, and ocean products, the resolution is 1/24 deg. and for the atmosphere the resolution is 1/12 deg. The output of G6A processing contains 8-day or 1-month temporal statistics of GV(s) which are stored in one dimensional array. An input file (L3 daily spatially-binned products) contains only one GV and thus the G6A also generates only one output file for the GV. Product ID of the input and output are therefore the same as shown in Table 1.

Fig. 1 Flow of the G6A L3 GV temporal statistics processing

2.2 Definition of the statistics

Equations for calculating "AVE" and "RMS" are the followings;

$$AVE = \frac{1}{n} \sum_{i} xi$$
$$RMS = \sqrt{\frac{1}{n} (\sum_{i} xi^{2})}$$

Where n is the total number of observation days with valid GVs, xi is the daily value of a GV to be processed.

" N_{used} " is the number of valid GV data actually used in the statistics, whereas " N_{input} " is the number of all the input GV data.

"MIN" and "MAX" are the minimum and maximum of valid GVs data during the temporal interval.

"Date" is an 8-bit value storing the dates of SGLI observations used in the statistics calculation. For example, when the Date value is 40 (i.e., 101000), then SGLI observations of 4th and 6th days in the temporal interval are used in the statistics.

2.3 QA process

"QA_flag" currently stores flags for discriminating land and water. In future update, QA information for GVs will be included.

2.4. Sample images

Because the output statistics variables are stored in one-dimensional array, the output results cannot be visualized as images. The output one-dimensional array of G6A (and G5A) is projected to the equirectangular (EQR) map projection (and polar stereographic projection only for cryosphere products) in the G7A processing. Figure 2 illustrate the definition of the one-dimensional array of the G6A output.

Fig. 2 Definition of the output array of the G6A processing.

3. Current status and remaining issues of the G6A code implementation

The G6A process works well without system errors. Processing speed and memory size are also within the expectations. Remaining tasks are the implementation of the QA_flag for the output of quality assurance information.